Journal of the American Chemical Society
Page 8 of 9
(9)Monot, J.; Solovyev, A.; BoninꢀDubarle, H.; Derat, É.; Curran,
D. P.; Robert, M.; Fensterbank, L.; Malacria, M.; Lacôte, E. Angew.
Chem. Int. Ed.2010, 49, 9166–9169.
(10)Piers, W. E.; Chivers, T. Chem. Soc. Rev.1997, 26, 345–354.
(11)Sajid, M.; Kehr, G.; Daniliuc, C. G.; Erker, G. Angew. Chem.
Int. Ed.2014, 53, 1118–1121.
(12)Molander, G. A.; Raushel, J.; Ellis, N. M. J. Org. Chem.2010,
75, 4304–4306.
1
2
3
4
5
6
(33) For stable boron compounds separated by normal phase chiral
HPLC, see: (a) Charoy, L.; Valleix, A.; Toupet, L.; Le Gall, T.; van
Chuong, P. P.; Mioskowski, C. Chem. Commun.2000, 2275–2276. (b)
Imamoto, T.; Morishita, H. J. Am. Chem. Soc.2000, 122, 6329–6330.
(c) Toyota, S.; Ito, F.; Nitta, N.; Hakamata, T. Bull. Chem. Soc.
Jpn.2004, 77, 2081–2088. (d) Braun, M.; Schlecht, S.; Engelmann,
M.; Frank, W.; Grimme, S. Eur. J. Org. Chem.2008, 5221–5225. (e)
Haefele, A.; Zedde, C.; Retailleau, P.; Ulrich, G.; Ziessel, R. Org.
Lett.2010, 12, 1672–1675.
(34)Zhu, L.; Shabbir, S. H.; Gray, M.; Lynch, V. M.; Sorey, S.;
Anslyn, E. V. J. Am. Chem. Soc.2006, 128, 1222–1232.
(35)Kaiser, P. F.; White, J. M.; Hutton, C. A. J. Am. Chem.
Soc.2008, 130, 16450–16451.
(13)He, Z.; Trinchera, P.; Adachi, S.; St Denis, J. D.; Yudin, A. K.
Angew. Chem. Int. Ed.2012, 51, 11092–11096.
(14)(a) Dumas, A. M.; Molander, G. A.; Bode, J. W. Angew.
Chem. Int. Ed.2012, 51, 5683–5686. (b) Noda, H.; Erős, G.; Bode, J.
W. J. Am. Chem. Soc.2014, 136, 5611–5614.
(15) αꢀKetoacids also react with hydroxylamines chemoselectively
to form amides. Selected examples, see: (a) Bode, J. W.; Fox, R. M.;
Baucom, K. D. Angew. Chem. Int. Ed.2006, 45, 1248–1252. (b) Patꢀ
tabiraman, V. R.; Ogunkoya, A. O.; Bode, J. W. Angew. Chem. Int.
Ed.2012, 51, 5114–5118. (c) Kumar, S.; Sharma, R.; Garcia, M.;
Kamel, J.; McCarthy, C.; Muth, A.; Phanstiel, O. J. Org. Chem.2012,
77, 10835–10845. (d) Wucherpfennig, T. G.; Pattabiraman, V. R.;
Limberg, F. R. P.; RuizꢀRodríguez, J.; Bode, J. W. Angew. Chem. Int.
Ed.2014, 53, 12248–12252.
(16)Dumas, A. M.; Bode, J. W. Org. Lett.2012, 14, 2138–2141.
(17)Erős, G.; Kushida, Y.; Bode, J. W. Angew. Chem. Int. Ed.2014,
53, 7604–7607.
(18)Noda, H.; Bode, J. W. Chem. Sci.2014, 5, 4328–4332.
(19) Hartwig, J. F., Ed.; Organotransition Metal Chemistry From
Bonding to Catalysis; University Science Books: Mill Valley, Caliꢀ
fornia, 2010.
(20)(a) Piepgrass, K. W.; Stockman, K. E.; Sabat, M.; Grimes, R.
N. Organometallics1992, 11, 2404–2413. (b) Imamoto, T.; Hikosaka,
T. J. Org. Chem.1994, 59, 6753–6759.
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(36) Preliminary results showed that the kinetic resolution of 11a
with enantiopure hydroxylamine is possible, although the selectivity
is moderate.
(21) See the Supporting Information for details.
(22) The ligand 6 was reported to form a stable bicyclic boronate
with phenylboronic acid or boron trifluoride. (a) Abreu, A.; Jesùs
Alas, S.; Beltrán, H. I.; Santillan, R.; Farfán, N. J. Organomet.
Chem.2006, 691, 337–348. (b) Umland, F.; Hohaus, E.; Brodte, K.
Chem. Ber.1973, 106, 2427–2437.
(23)Our current understanding is that a complexation involves an
onium species formed from an initial coordination from the nitrogen
to the boron, which does not undergo 5ꢀendoꢀtrig but rather 6ꢀendoꢀ
trig cyclization. See the Supporting Information for details. Also
see,Baldwin, J. E.; Cutting, J.; Dupont, W.; Kruse, L.; Silberman, L.;
Thomas, R. C. J. Chem. Soc., Chem. Commun.1976, 736–738.
(24)See the Supporting Information for details.
(25) MIDA acylboronate was also converted back to KAT at 23 °C
under similar conditions. See ref 18 for details.
(26) Analogs of 10a were also easily prepared. See the Supporting
Information for details.
(27) Almost no diastereoselectivity was observed on the formation
of 25a.
(37) Recently the halfꢀlives of KATs 31 and 32 in pH 7.5 buffꢀ
erwere reported as 2310 min and 10500 min respectively. Liu, Z.;
Chao, D.; Li, Y.; Ting, R.; Oh, J.; Perrin, D. M. Chem. Eur. J.2015,
21, 3924–3928.
(38) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,
B.; Petersson, G. A.; Nakatsuj, H.; Caricato, M.; Li, X.; Hratchian, H.
P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada,
M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.;
Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; J. A.
Montgomery, J.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.;
Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Norꢀ
mand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.;
Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J.
E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.;
Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.;
Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.;
Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A.
D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.
Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2013.
(39) See the Supporting Information for details.
(40) (a) Liu, J.; Albers, M. W.; Chen, C. M.; Schreiber, S. L.;
Walsh, C. T. Proc. Natl. Acad. Sci. U.S.A.1990, 87, 2304–2308. (b)
Romanelli, A.; Shekhtman, A.; Cowburn, D.; Muir, T. W. Proc. Natl.
Acad. Sci. U.S.A.2004, 101, 6397–6402. Twisted amides have gained
considerable attention. For selected leading references on this topic,
see: (c) Somayaji, V.; Brown, R. S. J. Org. Chem.1986, 51, 2676–
2686. (d) Greenberg, A.; MooreD. T.; DuBois, T. D. J. Am. Chem.
Soc.1996, 118, 8658–8668. (e) Kirby, A. J.; Komarov, I. V.; Wothers,
P. D.; Feeder, N. Angew. Chem. Int. Ed.1998, 37, 785–786. (f) Tani,
K.; Stoltz, B. M. Nature2006, 441, 731–734. (g) Szostak, M.; Yao,
L.; Aubé, J. J. Am. Chem. Soc.2010, 132, 2078–2084.
(28) Even higher yield was obtained in the conversion of potassium
phenyltrifluoroborateto the corresponding monofluorophenylboronaꢀ
teunder the identical conditions. Phenyldifluoroborane is a known
intermediate thatcan be observed by NMR. Vedejs, E.; Chapman, R.
W.; Fields, S. C.; Lin, S.; Schrimpf, M. R. J. Org. Chem.1995, 60,
3020–3027.
(29)Hermanek, S. Chem. Rev.1992, 92, 325–362.
(30) The structure was deposited to Cambridge Crystallographic
Data Centre (CCDCꢀ245188) by Coppens, P. and Moncol, J.
(31) Adams, J. M.; Morsi, S. E. ActaCrystallogr., Sect. B1976, 32,
1345–1347.
(32) C–B and B–O bond lengths of phenyl boronic acid 29 are
1.568 and 1.378/1.362 Å. In the tetrasubstituted diethanolamine adꢀ
duct 30, B–C, B–O and B–N bond lengths are 1.613, 1.474/1.460 and
1.666 Å respectively. (a) Rettig, S. J.; Trotter, J. Can. J. Chem.1977,
55, 3071–3075. (b) Rettig, S. J.; Trotter, J. Can. J. Chem.1975, 53,
1393–1401.
8
ACS Paragon Plus Environment