5ꢀDiphenyloxazolyl spironaphthopyrans
Russ.Chem.Bull., Int.Ed., Vol. 60, No. 3, March, 2011
463
Table 5. Total energies calculated taking account of zeroꢀpoint
vibrational energy correction Etot + ZPE (au) and the relative
energies ΔE (kcal mol–1) of the structures corresponding to the
critical points on the reaction pathways of thermal relaxation of
the merocyanine TTCꢀisomers of spironaphthopyrans 1—4, and
the open form and an increase in the activation barrier to
the reverse thermal reaction. Additional electronꢀwithꢀ
drawing substituent (Cl) in the indoline fragments of the
molecules in question causes this barrier to decrease,
whereas the electronꢀdonating substituent (OMe) leads to
its decrease.
the imaginary vibrational frequencies ν (cm–1) of the strucꢀ
im
tures of transition states (TS) in the solution in acetone obtained
from PBE0/6ꢀ311G** calculations
This work was financially supported by the Ministry of
Educaton and Science of the Russian Federation (Federal
Target Program "Scientific and Pedagogical Staff of Innoꢀ
vation Russia, Years 2009—2013", under the State Conꢀ
tract No. P2346) and the Russian Foundation for Basic
Research (Project No. 09ꢀ03ꢀ93115).
Structure
–(Etot + ZPE)
ν
ΔE
im
1A
1017.702657
1017.671032
1017.698675
1723.838754
1723.803932
1723.832228
2183.312774
2183.304650
2183.277887
1838.229602
1838.194650
1838.224420
—
i202.6
—
—
i179.1
—
—
i158.0
—
—
i205.8
—
0
1TS
1TTC
2A
2TS
2TTC
3A
3TS
3TTC
4A
4TS
4TTC
19.8
2.5
0
21.9
4.1
0
21.9
5.1
0
21.9
3.3
References
1. N. A. Voloshin, E. B. Gaeva, A. V. Chernyshev, A. V. Meꢀ
telitsa, V. I. Minkin, Izv. Akad. Nauk, Ser. Khim., 2009, 156
[Russ. Chem. Bull., Int. Ed., 2009, 58, 156].
2. R. C. Bertelson, in Organic Photochromic and Thermoꢀ
chromic Compounds. Topics in Applied Chemistry, Eds J. C.
Crano, R. J. Guglielmetti, Plenum Press, New York, 1999,
Vol. 1, p. 11.
3. V. I. Minkin, Chem. Rev., 2004, 104, 2751.
4. B. S. Luk´yanov, M. B. Luk´yanova, Khim. Geterotsikl. Soeꢀ
din., 2005, 321 [Chem. Heterocycl. Compd. (Engl. Transl.),
2005, No. 3].
5. S. M. Aldoshin, J. Photochem. Photobiol. A: Chem., 2008,
200, 19.
6. M. Inouye, Coord. Chem. Rev., 1996, 148, 265.
7. M. V. Alfimov, O. A. Fedorova, S. P. Gromov, J. Photoꢀ
chem. Photobiol. A: Chem., 2003, 158, 183.
8. S. Kum, H. Nishihara, Struct. Bond, 2007, 123, 79.
9. S. A. Ahmed, M. Tanaka, H. Ando, K. Tawa, K. Kimura,
Tetrahedron, 2004, 60, 6029.
In all cases, the activation barriers to reactions were
estimated from the total energy differences between the
TTCꢀisomer and the corresponding transition state calcuꢀ
lated with inclusion of zeroꢀpoint vibrational energies. The
calculated activation barriers to the reverse thermal reacꢀ
tion for the merocyanines 1TTC (17.3), 2TTC (17.8), and
3TTC (16.8 kcal mol–1) are in good agreement with exꢀ
perimental data (18.9, 20.9 and 16.6 kcal mol–1, respecꢀ
tively). For the merocyanine 3TTC with methoxy group in
the indoline fragment, the calculated and experimental
activation barriers (18.7 and 24.9 kcal mol–1, respectively)
differ to a greater extent.
10. J.ꢀR. Chen, J.ꢀB. Wong, P.ꢀY. Kuo, D.ꢀY. Yang, Org. Lett.,
2008, 10, 4823.
Summing up, based on the experimental data and
results of quantum chemical calculations, we established
that the additional longꢀwavelength maximum in the
absorption spectra of 5ꢀ(4,5ꢀdiphenylꢀ1,3ꢀoxazolꢀ2ꢀ
yl)spiro[indolylꢀnaphthopyran] derivatives appeared
upon introduction of the diphenyloxazolyl substituent
into the naphthopyran fragment and corresponding (for
the cyclic form) to the singlet π—π*ꢀtransition with
partial charge transfer from the diphenyloxazolyl substituꢀ
ent, is of wellꢀdefined charge transfer character for the
open form. Electronꢀdonating and electronꢀwithdrawing
substituents in the indoline fragments of the merocyaꢀ
nines are responsible for bathochromic shifts of the
longꢀwavelength maxima in the absorption spectra withꢀ
out changing the nature of the corresponding electronic
transitions.
11. M. Tomasulo, E. Deniz, R. J. Alvarado, F. M. Raymo,
J. Phys. Chem. C, 2008, 112, 8038.
12. B. Seefeldt, R. Kasper, M. Beining, J. Mattay, J. Ardenꢀ
Jacob, N. Kemnitzer, K. H. Drexhage, M. Heilemann,
M. Sauer, Photochem. Photobiol. Sci., 2010, 9, 213.
13. A. V. Chernyshev, N. A. Voloshin, I. M. Raskita, A. V. Meꢀ
telitsa, V. I. Minkin, J. Photochem. Photobiol. A: Chem., 2006,
184, 289.
14. N. A. Voloshin, A. V. Chernyshev, A. V. Metelitsa, V. I.
Minkin, Khim. Geterotsikl. Soedin., 2011, No. 4 [Chem.
Heterocycl. Compd. (Engl. Transl.), 2011, No. 4].
15. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996,
77, 3865.
16. V. Barone, M. Cossi, J. Phys. Chem. A, 1998, 102, 1995.
17. M. Guillaume, B. Champagne, F. Zutterman, J. Phys.
Chem. A, 2006, 110, 13007.
18. A. D. Becke, Phys. Rev. A, 1991, 91, 651.
19. A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
20. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 1988, 37, 785.
21. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr.,
T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S.
The kinetic parameters of the SNP transitions under
study depend only slightly on substituents. The introducꢀ
tion of the diphenyloxazolyl substituent into the naphthoꢀ
pyran fragment results in insignificant destabilization of