ORGANIC
LETTERS
2011
Vol. 13, No. 24
6460–6463
An Organocascade Kinetic Resolution
Patrick G. McGarraugh and Stacey E. Brenner-Moyer*
Department of Chemistry, Brooklyn College and the City University of New York,
2900 Bedford Avenue, Brooklyn, New York 11210, United States
Received October 13, 2011
ABSTRACT
Products of a novel iminium-catalyzed oxa-Michael addition undergo a kinetic resolution by a subsequent enamine-catalyzed intermolecular
reaction. This is a rare example of kinetic resolution by enamine catalysis and the first organocascade kinetic resolution. This resolution produces
enantioenriched 2,6-cis-tetrahydropyrans and, notably, cascade products with absolute and relative configurations normally not observed using
this diphenyl prolinol silyl ether. This resolution thus provides new insight into asymmetric induction in reactions employing this catalyst.
Efficient enantioselective oxa-Michael additions of alco-
hols are complicated by their reversibility, which can lead
to low yields and selectivities.1 Organocatalytic oxa-
Scheme 1. Organocatalytic Oxa-Michael Additions of Alcohols
Michael additions of alcohols have relied primarily on
two strategies to overcome this issue and as a result, with
few exceptions,2,4e,5b,6f,6l generate structures of type 2
(Scheme 1). Intramolecular oxa-Michael additions (i.e., of 1)
catalyzed by chiral phosphoric acid,2 guanidine,3 cinchona
alkaloid,4 and thiourea5 organocatalysts generate pro-
Alternatively, by tethering a nucleophilic alcohol to an
electrophilic center, as in 3, intermolecular oxa-Michael
additions are followed by intramolecular reactions, lead-
ing to cascade products in high yields and selectivities
by a combination of iminium and enamine catalysis.6
We sought to develop the enantioselective oxa-Michael
ducts in high yields, because the equilibrium of these
reactions lies largely to the right. Only a few examples
were both highly diastereo- and enantioselective.2,4g,5
(1) Kano, T.; Tanaka, Y.; Maruoka, K. Tetrahedron 2007, 63, 8658–
8664.
(2) Gu, Q.; Rong, Z.-Q.; Zheng, C.; You, S.-L. J. Am. Chem. Soc.
2010, 132, 4056–4057.
(3) (a) Saito, N.; Ryoda, A.; Nakanishi, W.; Kumamoto, T.; Ishikawa,
T. Eur. J. Org. Chem. 2008, 2759–2766. (b) Das, B. C.; Mohapatra, S.;
Campbell, P. D.; Nayak, S.; Mahalingam, S. M.; Evans, T. Tetrahedron
Lett. 2010, 51, 2567–2570.
(4) (a) Tanaka, T.; Kumamoto, T.; Ishikawa, T. Tetrahedron Lett.
2000, 41, 10229–10232. (b) Tanaka, T.; Kumamoto, T.; Ishikawa, T.
Tetrahedron: Asymmetry2000, 11, 4633–4637. (c) Sekino, E.; Kumamoto,
T.; Tanaka, T.; Ikeda, T.; Ishikawa, T. J. Org. Chem. 2004, 69, 2760–2767.
(d) Merschaert, A.; Delbeke, P.; Daloze, D.; Dive, G. Tetrahedron Lett.
(6) (a) Govender, T.; Hojabri, L.; Moghaddam, F. M.; Arvidsson,
ꢀ
P. I. Tetrahedron: Asymmetry 2006, 17, 1763–1767. (b) Rios, R.; Sunden,
ꢀ
H.; Ibrahem, I.; Cordova, A. Tetrahedron Lett. 2007, 48, 2181–2184.
(c) Li, H.; Wang, J.; E-Nunu, T.; Zu, L.; Jiang, W.; Wei, S.; Wang, W.
ꢀ
Chem. Commun. 2007, 507–509. (d) Sunden, H.; Ibrahem, I.; Zhao,
ꢀ
G.-L.; Eriksson, L.; Cordova, A. Chem.;Eur. J. 2007, 13, 574–581.
(e) Xu, D.-Q.; Wang, Y.-F.; Luo, S.-P.; Zhang, S.; Zhong, A.-G.; Chen,
H.; Xu, Z.-Y. Adv. Synth. Catal. 2008, 350, 2610–2616. (f) Reyes, E.;
Talavera, G.; Vicario, J. L.; Badıa, D.; Carrillo, L. Angew. Chem., Int.
´
Ed. 2009, 48, 5701–5704. (g) Zu, L.; Zhang, S.; Xie, H.; Wang, W. Org.
Lett. 2009, 11, 1627–1630. (h) Kotame, P.; Hong, B.-C.; Liao, J.-H.
Tetrahedron Lett. 2009, 50, 704–707. (i) Hong, B.-C.; Kotame, P.; Tsai,
C.-W.; Liao, J.-H. Org. Lett. 2010, 12, 776–779. (j) Xia, A.-B.; Xu,
D.-Q.; Luo, S.-P.; Jiang, J.-R.; Tang, J.; Wang, Y.-F.; Xu, Z.-Y.
€
2004, 45, 4697–4701. (e) de Figueiredo, T. M.; Frolich, R.; Christmann,
M. Angew. Chem., Int. Ed. 2007, 46, 2883–2886. (f) Dittmer, C.; Raabe,
G.; Hintermann, L. Eur. J. Org. Chem. 2007, 5886–5898. (g) Wang, H.-F.;
Cui, H.-F.; Chai, Z.; Li, P.; Zheng, C.-W.; Yang, Y.-Q.; Zhao, G.
Chem.;Eur. J. 2009, 15, 13299–13303.
(5) (a) Biddle, M. M.; Lin, M.; Scheidt, K. A. J. Am. Chem. Soc. 2007,
129, 3830–3831. (b) Li, D. R.; Murugan, A.; Falck, J. R. J. Am. Chem.
Soc. 2008, 130, 46–48.
ꢀ
ꢀ~
Chem.;Eur. J. 2010, 16, 801–804. (k) Aleman, J.; Nunez, A.; Marzo,
L.; Marcos, V.; Alvarado, C.; Ruano, J. L. G. Chem.;Eur. J. 2010, 16,
9453–9456. (l) Lin, S.; Zhao, G.-L.; Deiana, L.; Sun, J.; Zhang, Q.;
ꢀ
Leijonmarck, H.; Cordova, A. Chem.;Eur. J. 2010, 16, 13930–13934.
r
10.1021/ol2027587
Published on Web 11/15/2011
2011 American Chemical Society