catalytic conditions. We suspected that a complex mixture of
products may be produced if an aryl halide were appended to
the aromatic ring containing the thioester. Under the phosphine-
free conditions, a complex mixture of products was indeed
observed. However, upon addition of tri-2-furylphosphine as
ligand, a selective process was uncovered. Employing thioesters
containing appended aryl bromides, the cross-coupling pro-
ceeded to yield diaryl ketones in good yields using 0.5 mol%
Pd(dba)2 and 0.7 mol% tri-2-furylphosphine (2k–m, Table 3).
In contrast, with an aryl iodide present, complete conversion
to a biaryl Negishi product was observed (3n–3q). Finally,
compound 3p, produced from the coupling of the thioester of
3-bromo-5-iodobenzoic acid with o-anisyl zinc reagent, retains
both the reactive thioester functionality and the aryl bromide
that can be employed in additional cross-coupling reactions.
These results suggest that thioesters are more reactive towards
oxidative addition than aryl bromides.
7 J. Srogl, C. Savarin and L. S. Liebeskind, Org. Lett., 2000, 2,
3229–3231.
8 (a) C. Cardellicchio, V. Fiandese, G. Marchese and L. Ronzini,
Tetrahedron Lett., 1987, 28, 2053–2056; (b) V. Fiandese,
G. Marchese and F. Naso, Tetrahedron Lett., 1988, 29, 3587–3590.
9 T. Shimizu and M. Seki, Tetrahedron Lett., 2002, 43, 1039–1042.
10 H. Neumann, A. Brennfuhrer and M. Beller, Adv. Synth. Catal.,
2008, 350, 2437–2442.
11 D. H. R. Barton, N. Ozbalik and M. Ramesh, Tetrahedron, 1988,
44, 5661–5668.
12 M. Beller, H. Neumann and A. Brennfuehrer, Chem.–Eur. J., 2008,
14, 3645–3652.
13 N. A. Bumagin and D. N. Korolev, Tetrahedron Lett., 1999, 40,
3057–3060.
14 C. H. Cheng, Y. C. Huang and K. K. Majumdar, J. Org. Chem.,
2002, 67, 1682–1684.
15 C. H. Cheng, J. Karthikeyan and K. Parthasarathy, Chem. Commun.,
2011, 47, 10461–10463.
16 R. K. Dieter, Tetrahedron, 1999, 55, 4177–4236.
17 A. M. Echavarren and J. K. Stille, J. Am. Chem. Soc., 1988, 110,
1557–1565.
18 V. Fiandanese, G. Marchese, V. Martina and L. Ronzini,
Tetrahedron Lett., 1984, 25, 4805–4808.
19 J. P. Genet, O. Chuzel, A. Roesch and S. Darses, J. Org. Chem.,
2008, 73, 7800–7802.
20 L. J. Goossen and K. Ghosh, Angew. Chem., Int. Ed., 2001, 40,
3458–3462.
21 J. F. Hartwig and A. Takemiya, J. Am. Chem. Soc., 2006, 128,
14800–14801.
22 Y. Hatanaka, S. Fukushima and T. Hiyama, Tetrahedron, 1992,
48, 2113–2126.
23 S. P. Hollinshead, J. B. Nichols and J. W. Wilson, J. Org. Chem.,
1994, 59, 6703–6709.
24 P. Knochel, C. Duplais, F. Bures, I. Sapountzis, T. J. Korn and
G. Cahiez, Angew. Chem., Int. Ed., 2004, 43, 2968–2970.
25 M. T. Lockhart, M. J. Lo Fiego, G. F. Silbestri and A. B. Chopa,
J. Org. Chem., 2011, 76, 1707–1714.
26 S. F. Martin, B. M. O’Keefe and N. Simmons, Org. Lett., 2008, 10,
5301–5304.
In summary, we have described significant improvements in
the diaryl ketone synthesis via the Fukuyama reaction. The use
of Pd(dba)2 without an external ligand provided an active
catalyst that promoted the formation of diaryl ketones in good
to high yields at ambient temperature. The chemoselectivity of
this reaction was also investigated by employing thioester
substrates containing aryl halides. In the presence of aryl
iodides, the major product arose from a Negishi cross-coupling
reaction, whereas in the presence of aryl bromides, the major
product arose from a Fukuyama coupling at the thioester.
We gratefully acknowledge The Ohio State University for
support of this research, and Johnson Matthey for generously
providing ([Pd(PtBu3)Br]2).
27 N. Miyaura, T. Ishiyama, H. Kizaki, T. Hayashi and A. Suzuki,
J. Org. Chem., 1998, 63, 4726–4731.
Notes and references
1 J. F. Hartwig, Organotransition Metal Chemistry: From Bonding
to Catalysis, University Science Books, Sausalito, 2010.
2 T. Fukuyama, T. Miyazaki, Y. Han-ya and H. Tokuyama, Synlett,
2004, 477–480.
3 T. Fukuyama and H. Tokuyama, Aldrichim Acta, 2004, 37, 87–96.
4 T. Fukuyama, H. Tokuyama, S. Yokoshima and T. Yamashita,
Tetrahedron Lett., 1998, 39, 3189–3192.
28 T. Rovis and Y. D. Zhang, J. Am. Chem. Soc., 2004, 126,
15964–15965.
29 M. Seki and Y. Mori, Adv. Synth. Catal., 2007, 349, 2027–2038.
30 G. F. Silbestri, R. B. Masson, M. T. Lockhart and A. B. Chopa,
J. Organomet. Chem., 2006, 691, 1520–1524.
31 D. F. Taber and M. R. Sethuraman, J. Org. Chem., 2000, 65,
254–255.
5 H. Tokuyama, S. Yokoshima, T. Yamashita, S. C. Lin, L. P. Li
and T. Fukuyama, J. Braz. Chem. Soc., 1998, 9, 381–387.
6 L. S. Liebeskind and J. Srogl, J. Am. Chem. Soc., 2000, 122,
11260–11261.
32 M. Yang, H. L. Li, Y. X. Qi and J. J. Xue, E. J. Org. Chem., 2011,
2662–2667.
33 L. J. Zhang, Y. Z. Huang, H. X. Jiang, D. M. Jun and L. Yi,
J. Org. Chem., 1992, 57, 774–777.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 12679–12681 12681