6528
V. R. Chintareddy et al. / Tetrahedron Letters 52 (2011) 6523–6529
1059–1070; (c) Lotero, E.; Liu, Y.; Lopez, D. E.; Suwannakaran, A.; Bruce, D. A.;
Goodwin, J. G., Jr. Ind. Eng. Chem. Res. 2005, 44, 5353–5363; (d) Venkat Reddy,
C.; Oshel, R.; Verkade, J. G. Energy Fuels 2006, 20, 1310–1314; (e) Hoydonckx, H.
E.; De Vos, D. E.; Chavan, S. A.; Jacobs, P. A. Top. Catal. 2004, 27, 83–96.
6. Yazawa, H.; Tanaka, K.; Kariyone, K. Tetrahedron Lett. 1974, 3995–3996.
7. Brenner, M.; Huber, W. Helv. Chem. Acta 1953, 36, 1109–1115.
8. (a) Rehberg, C. E.; Fisher, C. H. J. Am. Chem. Soc. 1944, 66, 1203–1207; (b)
Rehberg, C. E.; Faucette, W. A.; Fisher, C. H. J. Am. Chem. Soc. 1944, 66, 1723–
1724; (c) Rehberg, C. E. In Organic Synthesis; Wiley: New York, 1955; Collective
Vol. 3, pp 146–148; (d) Haken, J. K. J. Appl. Chem. 1963, 13, 168–171.
9. (a) Taft, R. W., Jr.; Newman, M. S.; Verhoek, F. H. J. Am. Chem. Soc. 1950, 72,
4511–4519; (b) Billman, J. H.; Smith, W. T., Jr.; Rendall, J. L. J. Am. Chem. Soc.
1947, 69, 2058–2059.
amidation reactions providing good yields of products with reten-
tion of the chirality of the aminoalcohols. It is interesting that in
both of the cases wherein the FibreCat catalyst 5 was used (entries
6 and 8) the product yields were substantially higher than were
realized with 4 (entries 5 and 7, respectively). This result can be as-
cribed to the fibrous structure of FibreCat in which the catalyst
functional groups are concentrated on the surface of the fiber for
good substrate interaction. This contrasts with the structure of re-
sin beads which require solvent swelling and substrate diffusion
into bead interiors for contact with catalytic sites.
10. (a) Osipow, L.; Snell, F. D.; York, W. C.; Finchler, A. Ind. Eng. Chem. 1956, 48,
1459–1462; (b) Osipow, L.; Snell, F. D.; Finchler, A. J. Am. Oil Chem. Soc. 1957,
34, 185–188; (c) Komori, S.; Okahara, M.; Okamoto, K. J. Am. Oil Chem. Soc.
1960, 37, 468–473; (d) Grasa, G. A.; Guveli, T.; Singh, R.; Nolan, S. P. J. Org.
Chem. 2003, 68, 2812–2819; (e) Nyce, G. W.; Lamboy, J. A.; Connor, E. F.;
Waymouth, R. M.; Hedrick, J. L. Org. Lett. 2002, 4, 3587–3590; (f) Singh, R.;
Kissling, R. M.; Letellier, M.-A.; Nolan, S. P. J. Org. Chem. 2004, 69, 209–212; (g)
Grasa, G. A.; Kissling, R. M.; Nolan, S. P. Org. Lett. 2002, 4, 3583–3586.
11. (a) Yoo, D.-W.; Han, J.-H.; Nam, S. H.; Kim, H. J.; Kim, C.; Lee, J.-K. Inorg. Chem.
Commun. 2006, 9, 654–657; (b) Hao, X.; Yoshida, A.; Nishikido, J. Tetrahedron
Lett. 2004, 45, 781–785; (c) Ponde, D. E.; Deshpande, V. H.; Bulbule, V. J.;
Sudalai, A.; Gajare, A. S. J. Org. Chem. 1998, 63, 1058–1063; (d) Choudary, B. M.;
Kantam, M. L.; Venkat Reddy, C.; Aranganathan, S.; Shanti, P. L.; Figueras, F. J.
Mol. Catal. A: Chem. 2000, 159, 411–416; (e) Solhy, A.; Clark, J. H.; Tahir, R.;
Sebtic, S.; Larzek, M. Green Chem. 2006, 8, 871–874; (f) Bazi, F.; Badaoui, H. E.;
Samira Sokori, S.; Tamani, S.; Hamza, M.; Boulaajaj, S.; Sebti, S. Synth. Commun.
2006, 36, 1585–1592; (g) Kantam, M. L.; Neeraja, V.; Bharathi, B.; Venkat
Reddy, C. Catal. Lett. 1999, 62, 67–69.
In Table 5, the usefulness of our protocol was successfully dem-
onstrated for the double amidation of esters using chiral amino
alcohols at room temperature in good to excellent yields using cat-
alyst 3 or 4.
The high reactivity of amino alcohols also allows their selective
coupling with unactivated esters in the presence of amines (Eq 1).
As in Table 4, the reactions in Table 5 proceeded with retention of
chirality of the aminoalcohols.
BuNH2
H
+
N
4
OH
PhCH2CO2Me
+ H2N 2OH
O
THF, r.t.
+
81%
BnNH2
12. Ranu, B. C.; Dutta, P.; Sarkar, A. J. Org. Chem. 1998, 63, 6027–6028.
13. Baumhof, P.; Mazitschek, R.; Giannis, A. Angew. Chem., Int. Ed. 2001, 40, 3672–
3674.
ð1Þ
14. (a) Xiang, J.; Toyoshima, S.; Orita, A.; Otera, J. Angew. Chem., Int. Ed. 2001, 40,
3670–3672; (b) Bose, S. B.; Satyender, A.; Rudra Das, A. P.; Mereyala, H. B.
Synthesis 2006, 2392–2396; (c) Srinivas, K. V. N. S.; Mahender, I.; Das, B.
Synthesis 2003, 2479–2482.
15. For reviews on applications of proazaphosphatranes in synthetic organic
chemistry, see: (a) Verkade, J. G. Top. Curr. Chem. 2002, 233, 1–44; (b) Kisanga,
P. B.; Verkade, J. G. Tetrahedron 2003, 59, 7819–7858; (c) Verkade, J. G.;
Kisanga, P. B. Aldrichim. Acta 2004, 37, 3–14; (d) Urgaonkar, S.; Verkade, J. G.
‘‘Proazaphosphatrane Catalysts for Key Industrial Reactions’’ Speciality
Chemicals 2006, 26, 36–39.
16. References for proazaphosphatranes as electron-rich bulky ligands in cross-
coupling reactions include: (a) Su, W.; Urgaonkar, S.; McLaughlin, P. A.;
Verkade, J. G. J. Am. Chem. Soc. 2004, 126, 16433–16439; (b) You, J.; Verkade, J.
G. Angew. Chem., Int. Ed. 2003, 42, 5051–5054; (c) Urgaonkar, S.; Verkade, J. G.
Adv. Synth. Catal. 2004, 346, 611–616; (d) Venkat Reddy, C.; Urgaonkar, S.;
Verkade, J. G. Org. Lett. 2005, 7, 4427–4430; (e) Urgaonkar, S.; Nagarajan, M.;
Verkade, J. G. Tetrahedron Lett. 2002, 43, 8921–8924.
17. Ilankumaran, P.; Verkade, J. G. J. Org. Chem. 1999, 64, 3086–3089.
18. Sarkar, A.; Ilankumaran, P.; Kisanga, P.; Verkade, J. G. Adv. Synth. Catal. 2004,
346, 1093–1096.
In conclusion, Merrifield resin-bound N3@P(MeNCH2CH2)3N (4)
is a highly efficient, recyclable, metal-free green catalyst for transe-
sterifications of higher esters to lower esters at room temperature.
The robustness of 4 for recycling was demonstrated with triglyce-
ryl benzoate which sucessfully allowed 20 cycles albeit with an in-
crease in the time required for excellent yields. Separation of esters
from the reaction mixture is readily effected by the filtration of cat-
alyst 4 or 5 followed by evaporation of excess methanol to obtain
products in acceptable purity. To the best of our knowledge, 4 and
5 are the first heterogeneous catalysts reported for the amidation
of unactivated esters with amino alcohols, and it appears to be
quite general for this purpose. Our catalytic amidation protocol
does not require the use of excess coupling component, heat,
molecular sieves, or activated esters.
19. (a) Ilankumaran, P.; Verkade, J. G. J. Org. Chem. 1999, 64, 9063–9066. in which 4
was erroneously reported as the corresponding imine; The polymer catalyst 4
was prepared according to our previous method19a except that the
temperature employed was 70 °C rather than 130 °C, See (b) Venkat Reddy,
C.; Fetterly, B. M.; Verkade, J. G. Energy Fuels 2007, 21, 2466–2472. This
manuscript also reports the crystal structure of small molecule analogs of
polymer catalyst 4; The precursor (1) for the synthesis of polymer catalyst 4
was synthesized using our modified procedure (c) Venkat Reddy, C.; Verkade, J.
G. J. Org. Chem. 2007, 72, 3092–3096. The polymer catalyst 5 was prepared
analogously to 4 except that FibreCat was used as the starting material in stead
of Merrifield resin.
20. General procedure for room-temperature transesterifications and amidations: A
round bottom centrifuge tube containing catalyst 4 (6.7 mol % based on the
percent phosphorus determined by elemental analysis or as otherwise stated
in the footnotes of the corresponding Tables) was equipped with a rubber
septum and two magnetic stir bars for extra stirring efficiency. After flushing
the tube with argon, it was charged via syringe with a higher ester (5 mmol)
and MeOH (5 mL) for transesterifications. For amidations, the tube was
similarly charged with an ester (2 mmol), amino alcohol (2 mmol), and THF
(3 mL). The reaction mixture was vigorously stirred at room temperature (23–
25 °C) and progress of the reaction was monitored by thin layer
chromatography. Upon completion of the reaction, the reaction mixture was
filtered through Whatman No. 1 filter paper and washed with 3 ꢀ 10 mL of
THF. The combined organics were subjected to short-path silica gel
chromatography (0–20% ethyl acetate in hexanes v/v) to obtain an
analytically pure product. In the case of amides, products were purified
using a short-path silica gel column eluted with dichloromethane/methanol
(95:5, v/v).
Acknowledgment
The authors are grateful to the National Science Foundation for
grant support.
Supplementary data
Supplementary data (general considerations, references to
known compounds and 1H, 13C NMR spectra and HRMS reports
of all compounds prepared) associated with this article can be
References and notes
1. (a) Ley, S. V.; Baxendale, I. R.; Bream, R. N.; Jackson, P. S.; Leach, A. G.;
Longbottom, D. A.; Nesi, M.; Scott, J. S.; Storer, R. I.; Taylor, S. J. J. Chem. Soc.,
Perkin Trans. 1 2000, 3815–4195; (b) Baker, R. T.; Kobayashi, S.; Leitner, W. Adv.
Synth. Catal. 2006, 348, 1337–1340; (c) Kobayashi, S.; Akiyama, R. Chem.
Commun. 2003, 449–460; (d) McNamara, C. A.; Dixon, M. J.; Bradley, M. Chem.
Rev. 2002, 102, 3275–3300.
2. Leadbeater, N. E.; Marco, M. Chem. Rev. 2002, 102, 3217–3274.
3. Drewry, D. H.; Coe, D. M.; Poon, S. Med. Res. Rev. 1999, 19, 97–148.
4. (a) Otera, J. Chem. Rev. 1993, 93, 1449–1470; (b) Nair, V.; Bindu, S.; Sreekumar,
V. Angew. Chem., Int. Ed. 2004, 43, 5130–5135; (c) Grasa, G. A.; Singh, R.; Nolan,
S. P. Synthesis 2004, 971–985; (d) Otera, J. Acc. Chem. Res. 2004, 37, 288–296.
5. (a) Toda, M.; Takagaki, A.; Okamura, M.; Kondo, J. N.; Hayashi, S.; Domen, K.;
Hara, M. Nature 2005, 438, 178; (b) Knothe, G. Fuel Process. Technol. 2005, 86,
Spectral data for selected products: 3-fluoro-N-(2-hydroxyethyl)-benzamide
(Table 3, entry 6): 1H NMR (CDCl3, 300 MHz): d 7.46–7.53 (m, 2H), 7.34–7.41
(m, 1H), 7.15–7.21 (m, 1H), 6.80 (br s, 1H), 3.82 (m, 2H), 3.60 (m, 2H), 2.91 (br
s, 1H) ppm; 13C NMR (CD3OD, 100.6 MHz): d 170.4, 166.7, 164.2, 139.5, 139.4,