Organic Letters
Letter
Scheme 2. Thiol−Ene Click Chemistry
Author Contributions
∥J.C.M. and A.M.S contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support from Wayne State University is gratefully
acknowledged. J.C.M. thanks the Nuclear Regulatory Com-
mission Program (NRC-HQ-84-14-G-0037) from the Uni-
versity of Iowa for the graduate fellowship.
REFERENCES
■
(1) Fowler, J. S.; Wolf, A. P. Acc. Chem. Res. 1997, 30, 181−188.
(2) Phelps, M. E. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 9226−9233.
(3) Vallabhajosula, S. Semin. Nucl. Med. 2007, 37, 400−419.
(4) Ametamey, S. M.; Honer, M.; Schubiger, P. A. Chem. Rev. 2008,
108, 1501−1516.
used as thiol-reactive reagents for peptide conjugation without
being confined on specific substrates.
In summary, we developed a new radiofluorination protocol
for the rapid, operationally simple, and regioselective synthesis
of a variety of allylic [18F]fluorides. To our knowledge this is
the first example of a broad range of [18F]allylic fluorides to be
reported. This procedure is compatible with a wide range of
structural motifs including α-linear, α-branching, β-oxygen,
nitrogen-heterocycle, and complex molecules bearing stereo-
centers proximal to the allylic position, generating the desired
allylic [18F]fluorides in good radiochemical conversion and
high levels of branched selectivity. To further illustrate the
utility of this radiofluorination system for clinical application,
several [18F]fluoride molecules were subsequently isolated via
semiprep HPLC, leading to the desired products in good
nondecay corrected radiochemical yield and high purity.
Finally, the utility of this radiofluorination method has been
highlighted via the site-specific modification of allylic [18F]-
fluoride with a cysteine residue mediated by a photoredox
iridium catalyst. We envision that the rapid and simplistic
procedure of this radiofluorination reaction will make it
effective for fluorine-18 installation into PET radiotracers. Our
current efforts focus on optimizing and expanding the scope of
the radical thiol−ene reactions to biologically and clinically
relevant targets. Automated radiosynthesis of allylic fluorides
will also be investigated in order to carry out these
radiofluorinations with higher levels of activity suitable for
clinical application.
(5) Pimlott, S. L.; Sutherland, A. Chem. Soc. Rev. 2011, 40, 149−162.
(6) Miller, P. W.; Long, N. J.; Vilar, R.; Gee, A. D. Angew. Chem., Int.
Ed. 2008, 47, 8998−9033.
(7) Cai, L.; Lu, S.; Pike, V. W. Eur. J. Org. Chem. 2008, 2008, 2853−
2873.
(8) Lee, E.; Kamlet, A. S.; Powers, D. C.; Neumann, C. N.;
Boursalian, G. B.; Furuya, T.; Choi, D. C.; Hooker, J. M.; Ritter, T.
Science 2011, 334, 639−642.
(9) Lee, E.; Hooker, J. M.; Ritter, T. J. Am. Chem. Soc. 2012, 134,
17456−17458.
(10) Kamlet, A. S.; Neumann, C. N.; Lee, E.; Carlin, S. M.; Moseley,
C. K.; Stephenson, N.; Hooker, J. M.; Ritter, T. PLoS One 2013, 8,
No. e59187.
(11) Ichiishi, N.; Canty, A. J.; Yates, B. F.; Sanford, M. S. Org. Lett.
2013, 15, 5134−5137.
(12) Ren, H.; Wey, H.-Y.; Strebl, M.; Neelamegam, R.; Ritter, T.;
Hooker, J. M. ACS Chem. Neurosci. 2014, 5, 611−615.
(13) Ichiishi, N.; Brooks, A. F.; Topczewski, J. J.; Rodnick, M. E.;
Sanford, M. S.; Scott, P. J. H. Org. Lett. 2014, 16, 3224−3227.
(14) Tredwell, M.; Preshlock, S. M.; Taylor, N. J.; Gruber, S.;
́
Huiban, M.; Passchier, J.; Mercier, J.; Genicot, C.; Gouverneur, V.
Angew. Chem., Int. Ed. 2014, 53, 7751−7755.
(15) Mossine, A. V.; Brooks, A. F.; Makaravage, K. J.; Miller, J. M.;
Ichiishi, N.; Sanford, M. S.; Scott, P. J. H. Org. Lett. 2015, 17, 5780−
5783.
(16) Makaravage, K. J.; Brooks, A. F.; Mossine, A. V.; Sanford, M. S.;
Scott, P. J. H. Org. Lett. 2016, 18, 5440−5443.
(17) Neumann, C. N.; Hooker, J. M.; Ritter, T. Nature 2016, 534,
369.
(18) Brooks, A. F.; Topczewski, J. J.; Ichiishi, N.; Sanford, M. S.;
Scott, P. J. H. Chem. Sci. 2014, 5, 4545−4553.
(19) Campbell, M. G.; Ritter, T. Chem. Rev. 2015, 115, 612−633.
(20) Buckingham, F.; Gouverneur, V. Chem. Sci. 2016, 7, 1645−
1652.
(21) Preshlock, S.; Tredwell, M.; Gouverneur, V. Chem. Rev. 2016,
116, 719−766.
(22) Huang, X.; Liu, W.; Ren, H.; Neelamegam, R.; Hooker, J. M.;
Groves, J. T. J. Am. Chem. Soc. 2014, 136, 6842−6845.
(23) Huang, X.; Liu, W.; Hooker, J. M.; Groves, J. T. Angew. Chem.,
Int. Ed. 2015, 54, 5241−5245.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures, radio-HPLC, radio-TLC, and
complete characterization for all new compounds (PDF)
AUTHOR INFORMATION
Corresponding Authors
■
(24) Graham, T. J. A.; Lambert, R. F.; Ploessl, K.; Kung, H. F.;
Doyle, A. G. J. Am. Chem. Soc. 2014, 136, 5291−5294.
(25) Nielsen, M. K.; Ugaz, C. R.; Li, W.; Doyle, A. G. J. Am. Chem.
Soc. 2015, 137, 9571−9574.
ORCID
̈
(26) Hintermann, L.; Lang, F.; Maire, P.; Togni, A. Eur. J. Inorg.
Chem. 2006, 2006, 1397−1412.
(27) Hazari, A.; Gouverneur, V.; Brown, J. M. Angew. Chem., Int. Ed.
2009, 48, 1296−1299.
D
Org. Lett. XXXX, XXX, XXX−XXX