ORGANIC
LETTERS
2011
Vol. 13, No. 24
6504–6507
Selenium-Catalyzed Regioselective
Cyclization of Unsaturated Carboxylic
Acids Using Hypervalent Iodine Oxidants
Fateh V. Singh and Thomas Wirth*
School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, U.K.
Received October 18, 2011
ABSTRACT
A new and convenient selenium-catalyzed regioselective cyclization of γ,δ-unsaturated carboxylic acids to the corresponding 3,6-dihydro-2H-
pyran-2-ones is described. The cyclization products have been obtained in good to excellent yields using diphenyl diselenide as a catalyst and
[bis(trifluoroacetoxy)iodo]benzene as a stoichiometric oxidant.
In the past few decades, organoselenium chemistry has
been developed into an important tool in synthetic organic
chemistry. Several organoselenium reagents have been
employed in various useful synthetic transformations such
as selenenylations, selenocyclizations, selenoxide elimi-
nations, and 2,3-sigmatropic rearrangements.1 Recently,
organoselenium reagents have been used catalytically in
various synthetic transformations such as oxidation of
alcohols,2 olefins,3 and carbonyl compounds;4 elimination
reactions of diols;5 DielsꢀAlder reactions;6 and Baylisꢀ
Hillman7 and radical chain reactions.8 Recently, we have
reported the selenium-catalyzed synthesis of butenolides9
and isocoumarins10 by cyclization of β,γ-butenoic acids
and stilbene carboxylic acids, respectively. The cyclization
of γ,δ-unsaturated pentenoic acids with selenium reagents
as catalysts is still unexplored. Our target was to achieve
the synthesis of 2H-pyran-2-ones by cyclization of γ,δ-
unsaturated pentenoic acids using selenium reagents as
a catalyst. The 2H-pyran-2-one scaffolds are known for
various biological properties, and this structural motif
is found in several natural products.11 In addition, the
(1) (a) Organoselenium Chemistry; Wirth, T., Ed.; Wiley-VCH:
Weinheim, 2011. (b) Santi, C.; Santoro, S.; Battistelli, B. Curr. Org. Chem.
2010, 14, 2442. (c) Freudendahl, D. M.; Shahzad, S. A.; Wirth, T. Eur. J.
Org. Chem. 2009, 1649–1664. (d) Freudendahl, D. M.; Santoro, S.;
Shahzad, S. A.; Santi, C.; Wirth, T. Angew. Chem. 2009, 121, 8559–8562.
Angew. Chem., Int. Ed. 2009, 48, 8409–8411. (e) Browne, D. M.; Wirth,
T. Curr. Org. Chem. 2006, 10, 1893–1903. (f) Wirth, T. Angew. Chem.
2000, 112, 3890–3900. Angew. Chem., Int. Ed. 2000, 39, 3740–3751.
(g) Wirth, T. Tetrahedron 1999, 55, 1–28.
(2) (a) Onami, T.; Ikeda, M.; Woodard, S. S. Bull. Chem. Soc. Jpn.
1996, 69, 3601–3605. (b) Ehara, H.; Noguchi, M.; Sayama, S.; Onami, T.
J. Chem. Soc., Perkin Trans. 1 2000, 1429–1431. (c) van der Toorn, J. C.;
Kemperman, G.; Sheldon, R. A.; Arends, I. W. C. E. J. Org. Chem. 2009,
74, 3085–3089. (d) Singh, P.; Singh, A. K. Eur. J. Inorg. Chem. 2010,
4187–4195.
(3) (a) Betzemeier, B.; Lhermitte, F.; Knochel, P. Synlett 1999, 489–
491. (b) Goodman, M. A.; Detty, M. R. Synlett 2006, 1100–1104. (c)
Garcia-Marin, H.; van der Toorn, J. C.; Mayoral, J. A.; Garcia, J. I.;
Arends, I. W. C. E. Green Chem. 2009, 11, 1605–1609. (d) Gogoi, P.;
Sharma, S. D.; Konwar, D. Lett. Org. Chem. 2007, 4, 249–252. (e)
Santoro, S.; Santi, C.; Sabatini, M.; Testaferri, L.; Tiecco, M. Adv.
Synth. Catal. 2008, 350, 2881–2884. (f) Brodsky, B. H.; Du Bois, J. J.
Am. Chem. Soc. 2005, 127, 15391–15393. (g) Carrera, I.; Brovetto, M. C.;
Seoane, G. A. Tetrahedron Lett. 2006, 47, 7849–7852.
(5) Crich, D.; Neelamkavil, S.; Sartillo-Piscil, F. Org. Lett. 2000, 2,
4029–4031.
(6) Lenardao, E. J.; Mendes, S. R.; Ferreira, P. C.; Perin, G.; Silveira,
C. C.; Jacob, R. G. Tetrahedron Lett. 2006, 47, 7439–7442.
(7) Lenardao, E. J.; Feijo, J. O.; Thurow, S.; Perin, G.; Jacob, R. G.;
Silveira, C. C. Tetrahedron Lett. 2009, 50, 5215–5217.
(8) (a) Clive, D. L. J.; Pham, M. P.; Subedi, R. J. Am. Chem. Soc.
2007, 129, 2713–2717. (b) Crich, D.; Sannigrahi, M. Tetrahedron 2002,
58, 3319–3322. (c) Crich, D.; Rumthao, S. Tetrahedron 2004, 60, 1513–
1516. (d) Crich, D.; Patel, M. Org. Lett. 2005, 7, 3625–3628.
(9) (a) Browne, D. M.; Niyomura, O.; Wirth, T. Org. Lett. 2007, 9,
3169–3171. (b) Browne, D. M.; Niyomura, O.; Wirth, T. Phosphorus
Sulfur 2008, 183, 1026–1035.
(4) (a) Brink, G.; Vis, J.-M.; Arends, I. W. C. E.; Sheldon, R. A. J.
Org. Chem. 2001, 66, 2429–2433. (b) Miyake, Y.; Nishibayashi, Y.;
Uemura, S. Bull. Chem. Soc. Jpn. 2002, 75, 2233–2237. (c) Ichikawa, H.;
Usami, Y.; Arimoto, M. Tetrahedron Lett. 2005, 46, 8665–8668. (d)
(10) Shahzad, S. A.; Venin, C.; Wirth, T. Eur. J. Org. Chem. 2010,
3465–3472.
ꢀ
Wojtowicz, H.; Brzaszcz, M.; Kloc, K.; Mlochowski, J. Tetrahedron
2001, 57, 9743–9748.
(11) Goel, A.; Ram, V. J. Tetrahedron 2010, 65, 7865–7913.
r
10.1021/ol202800k
Published on Web 11/15/2011
2011 American Chemical Society