ORGANIC
LETTERS
2005
Vol. 7, No. 16
3445-3447
Kinetic Resolution of Alcohols Using a
1,2-Dihydroimidazo[1,2-a]quinoline
Enantioselective Acylation Catalyst
Vladimir B. Birman* and Hui Jiang
Department of Chemistry, Washington UniVersity, Campus Box 1134,
One Brookings DriVe, St. Louis, Missouri 63130
Received May 9, 2005
ABSTRACT
A new enantioselective acylation catalyst (Cl-PIQ), designed to provide enhanced
π-stacking with benzylic and cinnamyl alcohol substrates,
was found to give considerably increased reaction rates and selectivities compared with the first-generation catalyst CF3-PIP.
We have recently reported a new class of enantioselective
acylation catalysts based on the 2,3-dihydroimidazo[1,2-a]-
pyridine (DHIP) core. One of these easily accessible
compounds, 2-phenyl-6-trifluoromethyl-dihydroimidazo[1,2-
a]pyridine (1, abbreviated as CF3-PIP), proved to be par-
ticularly effective in kinetic resolution of secondary benzylic
alcohols (Figure 1). Our experimental data suggested that
Having achieved good selectivities with benzylic alcohols
(s ) 20-85), we decided to explore kinetic resolution of
other classes of secondary alcohols that are capable of
π-stacking.4,5 In particular, we were curious whether cin-
(2) For leading references to other nonenzymatic asymmetric acylation
catalysts, see: (a) Fu, G. C. Acc. Chem. Res. 2004, 37, 542. (b) Vedejs, E.;
Daugulis, O. J. Am. Chem. Soc. 2003, 125, 4166. (c) Kawabata, T.; Stragies,
R.; Fukaya, T.; Nagaoka, Y.; Schedel, H.; Fuji, K. Tetrahedron Lett. 2003,
44, 1545. (d) Terakado, D.; Koutaka, H.; Oriyama, T. Tetrahedron:
Asymmetry 2005, 16, 1157. (e) Miller, S. J. Acc. Chem. Res. 2004, 37,
601. (f) Spivey, A. C.; Zhu, F.; Mitchell, M. B.; Davey, S. G.; Jarvest, R.
L. J. Org. Chem. 2003, 68, 7379. (g) Naraku, J.; Shimomoto, N.; Hanamoto,
T.; Inanaga, J. Enantiomer 2000, 5, 135. (h) Lin, M.-H.; RajanBabu, T. V.
Org. Lett. 2002, 4, 1607. (i) Priem, G.; Pelotier, B.; Macdonald, S. J. F.;
Anson, M. S.; Campbell, I. B. J. Org. Chem. 2003, 68, 3844. (j) Jeong,
K.-S.; Kim, S.-H.; Park, H.-J.; Chang, K.-J.; Kim, K. S. Chem. Lett. 2002,
1114. (k) Matsumura, Y.; Maki, T.; Murakami, S.; Onomura, O. J. Am.
Chem. Soc. 2003, 125, 2052. (l) Mizuta, S.; Sadamori, M.; Fujimoto, T.;
Yamamoto, I. Angew. Chem., Int. Ed. 2003, 42, 3383. (m) Suzuki, Y.;
Yamauchi, K.; Muramatsu, K.; Sato, M. Chem. Commun. 2004, 2770. (n)
Ishihara, K.; Kosugi, Y.; Akakura, M. J. Am. Chem. Soc. 2004, 126, 12212.
(o) Dalaigh, C. O.; Hynes, S. J.; Maher, D. J.; Connon, S. J. Org. Biomol.
Chem. 2005, 3, 981. (p) Kano, T.; Sasaki, K.; Maruoka, K. Org. Lett. 2005,
7, 1347. (q) Yamada, S.; Misono, T.; Iwai, Y. Tetrahedron Lett. 2005, 46,
2239.
Figure 1. CF3-PIP, the best first-generation catalyst.
the chiral recognition in this process was dependent on the
π-π and cation-π interactions between the reactive acylated
intermediate and the aryl moiety in the substrate. This led
us to propose transition state model 1a.1-3
(3) Recent reviews: (a) Vedejs, E.; Jure, M. Angew. Chem., Int. Ed.
2005, 44, 3974. (b) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2004,
43, 5138. (c) Jarvo, E. R.; Miller, S. J. Asymmetric Acylation. In
ComprehensiVe Asymmetric Catalysis, Supplement 1; Jacobsen, E. N., Pfaltz,
A., Yamamoto, H., Eds.; Springer-Verlag: Berlin, Heidelberg, 2004; Chapter
43. (d) France, S.; Guerin, D. J.; Miller, S. J.; Lectka, T. Chem. ReV. 2003,
103, 2985. (e) Spivey, A. C.; Maddaford, A.; Redgrave, A. J. Org. Prep.
Proc. Int. 2000, 32, 331.
(1) Birman, V. B.; Uffman, E. W.; Jiang, H.; Li, X.; Kilbane, C. J. J.
Am. Chem. Soc. 2004, 126, 12226.
10.1021/ol051063v CCC: $30.25
© 2005 American Chemical Society
Published on Web 07/14/2005