pp. 130–139; (f) T. Hudlicky, in Green Chemistry. Designing Chemistry
for the Environment, ed. P. T. Anastas and T. C. Williamson, ACS Sym-
posium Series 626, American Chemical Society, Washington, D. C.,
1996, Ch. 14; (g) D. R. Boyd and G. N. Sheldrake, Nat. Prod. Rep.,
1998, 15, 309–324; (h) T. Hudlicky, D. Gonzales and D. T. Gibson,
Aldrichimica Acta, 1999, 32, 35–62; (i) D. R. Boyd, N. D. Sharma and
C. C. R. Allen, Curr. Opin. Biotechnol., 2001, 12, 564–573; ( j) D.
R. Boyd and N. D. Sharma, J. Mol. Catal. B: Enzym., 2002, 19–20,
31–42; (k) D. R. Boyd and T. D. H. Bugg, Org. Biomol. Chem., 2006,
4, 181–192; (l) T. Hudlicky and J. W. Reed, Synlett, 2009, 685–703;
(m) T. Hudlicky and J. W. Reed, Chem. Soc. Rev., 2009, 38, 3117–
3132.
Conversion of 22 to 21. A catalytic amount of OsO4 was added
to a stirred solution of ester 19 (100 mg, 0.72 mmol), N-methyl
morpholine N-oxide (82 mg, 0.72 mmol) in acetone–water
(2 mL/0.6 mL). The resulting solution was stirred for 1 h at
room temperature, and then it was quenched with 15% NaHSO3
solution (1 mL). The reaction mixture was diluted with EtOAc
(20 mL) and water (5 mL). The layers were separated and the
aqueous layer was extracted further with EtOAc (2 × 10 mL).
The combined organic extracts were dried over anhydrous
MgSO4. The filtrate was concentrated via rotary evaporation and
was used as crude in the next step.
9 F. Fabris, J. Collins, B. Sullivan, H. Leisch and T. Hudlicky, Org. Biomol.
Chem., 2009, 7, 2619–2627.
10 B. Sullivan, I. Carrera, M. Drouin and T. Hudlicky, Angew. Chem., Int.
Ed., 2009, 48, 4229–4231.
11 M. A. Endoma, V. P. Bui, J. Hansen and T. Hudlicky, Org. Process Res.
Dev., 2002, 6, 525–532.
To the crude mixture of diol (from the previous step) dissolved
in CH2Cl2 (10 mL) was added dimethoxypropane (2.0 mL,
16.3 mmol) followed by a catalytic amount of pTsOH. The reac-
tion mixture was stirred at room temperature for 30 min. Then it
was diluted with 1 N NaOH (2 mL), the two layers were separ-
ated and the aqueous layer was further extracted with CH2Cl2
(2 × 5 mL). The organic layers were combined and dried over
anhydrous MgSO4. The filtrate was concentrated by rotary
evaporation and further purified by column chromatography on
silica gel (4 : 1 hexanes–EtOAc) to afford the desired product 21
(25 mg, 16.3% yield, over two steps) as a yellowish oil. 88% ee
[α]2D0 −25.1 (c 1.0, CH2Cl2)) compound 21 from 20b–20d
[α]2D0 +32.8 (c 4.4, CH2Cl2).
12 D. R. Boyd, N. D. Sharma, S. A. Barr, H. Dalton, J. Chima, G. Whited
and R. Seemayer, J. Am. Chem. Soc., 1994, 116, 1147–1148.
13 D. R. Boyd, N. D. Sharma, M. Kaik, M. Bell, M. V. Berberian,
P. B. A. McIntyre, B. Kelly, C. Hardacre, P. J. Stevenson and
C. C. R. Allen, Adv. Synth. Catal., 2011, 353, 2455–2465.
14 D. R. Boyd, N. D. Sharma, B. E. Byrne, S. A. Haughey, M. A. Kennedy
and C. C. R. Allen, Org. Biomol. Chem., 2004, 2, 2530–2537.
15 (a) D. R. Boyd, N. D. Sharma, M. V. Hand, M. R. Groocock,
N. A. Kerley, H. Dalton, J. Chima and G. N. Sheldrake, J. Chem. Soc.,
Chem. Commun., 1993, 974–976; (b) H. Akgün and T. Hudlicky, Tetrahe-
dron Lett., 1999, 40, 3081–3084; (c) H. Raschke, M. Meier, J.
G. Burken, R. Hany, M. D. Muller, J. R. Van Der Meer and H.-P.
E. Kohler, Appl. Environ. Microbiol., 2001, 67, 3333–3339.
16 (a) W. Reineke, W. Otting and H. J. Knackmuss, Tetrahedron, 1978, 34,
1707–1714; (b) W. Reineke and H.-J. Knackmuss, Biochim. Biophys.
Acta, 1978, 542, 412–423; (c) K.-H. Engesser, E. Schmidt and
H.-J. Knackmuss, Appl. Environ. Microbiol., 1980, 39, 68–73;
(d) A. M. Reiner and G. D. Hegeman, Biochemistry, 1971, 10, 2530–
2536; (e) E. Dorn, M. Hellwig, W. Reineke and H. J. Knackmuss,
Arch. Microbiol., 1974, 99, 61–70; (f) K. H. Engesser, R. B. Cain and
H. J. Knackmuss, Arch. Microbiol., 1988, 149, 188–197; (g) H.
R. Schlafli, M. A. Weiss, T. Leisinger and A. M. Cook, J. Bacteriol.,
1994, 176, 6644–6652; (h) G. M. Whited, W. R. McCombie, L. D. Kwart
and D. T. Gibson, J. Bacteriol., 1986, 166, 1028–1039; (i) J. J. DeFrank
and D. W. Ribbons, J. Bacteriol., 1977, 129, 1356–1364.
17 (a) S. J. C. Taylor, D. W. Ribbons, A. M. Z. Slawin, D. A. Widdowson
and D. J. Williams, Tetrahedron Lett., 1987, 28, 6391–6392; (b) J.
J. Defrank and D. W. Ribbons, Biochem. Biophys. Res. Commun., 1976,
70, 1129–1135; (c) K. H. Engesser, M. A. Rubio and D. W. Ribbons,
Arch. Microbiol., 1988, 149, 198–206.
Acknowledgements
The authors are grateful to the following agencies for financial
support of this work: Natural Sciences and Engineering Research
Council of Canada (NSERC) (Idea to Innovation and Discovery
Grants); Canada Research Chair Program, Canada Foundation
for Innovation (CFI), Research Corporation, TDC Research, Inc.,
TDC Research Foundation, and Brock University. Thanks are
also due to the Ministry of Education (Spain) for fellowships to
V.S. (AP2006-03468ESTANCIA-2010) and partial support of
Slovak grant agency VEGA (1/0524/11).
18 A. J. Blacker, R. J. Booth, G. M. Davies and J. K. Sutherland, J. Chem.
Soc., Perkin Trans. 1, 1995, 2861–2870.
19 C. Tanyeli and E. Turkut, Tetrahedron: Asymmetry, 2004, 15, 2057–2060.
20 D. L. Sloman, J. W. Bacon and J. A. Porco, J. Am. Chem. Soc., 2011,
133, 9952–9955.
References
1 R. A. Johnson, Org. React., 2004, 63, 117–264.
2 D. T. Gibson, J. R. Koch, C. L. Schuld and R. E. Kallio, Biochemistry,
1968, 7, 3795–3802.
3 B. A. Finette, V. Subramanian and D. T. Gibson, J. Bacteriol., 1984, 160,
1003–1009.
4 G. J. Zylstra and D. T. Gibson, J. Biol. Chem., 1989, 264, 14940–14946.
5 D. G. H. Ballard, A. Courtis, I. M. Shirley and S. C. Taylor, J. Chem.
Soc., Chem. Commun., 1983, 954–955.
6 S. V. Ley, F. Sternfeld and S. Taylor, Tetrahedron Lett., 1987, 28, 225–
226.
7 T. Hudlicky, H. Luna, G. Barbieri and L. D. Kwart, J. Am. Chem. Soc.,
1988, 110, 4735–4741.
8 List of reviews: (a) T. Hudlicky, in Enzymes in Organic Synthesis,
NATO ASI Series C, ed. S. Servi, Kluwer Academic, Boston, 1992,
vol. 381, p. 123; H. A. J. Carless, Tetrahedron: Asymmetry, 1992, 3,
795–826; (b) T. Hudlicky, R. Fan, H. Luna, H. Olivo and J. Price, Pro-
ceedings of IUPAC Congress on Enzymes in Organic Synthesis, New
Delhi, India, January 1992, Pure Appl. Chem., 1992, 64, 1109–1113;
Indian J. Chem., Sect. B, 1993, 32B, 154–158; (c) T. Hudlicky, in
Organic Synthesis: Theory and Applications, ed. T. Hudlicky, JAI Press,
Stamford, CT, 1993, vol. 2, p. 113; (d) T. Hudlicky and J. W. Reed, in
Advances in Asymmetric Synthesis, ed. A. Hassner, JAI Press, London,
1995, vol. 1, p. 271; (e) D. R. Boyd, N. D. Sharma and H. Dalton,
from Special Publication-Royal Society of Chemistry, 1995, vol. 148,
21 M. A. A. Endoma-Arias and T. Hudlicky, Tetrahedron Lett., 2011, 52,
6632–6634.
22 For
a summary of mechanistic postulates see: T. Hudlicky and
J. W. Reed, Synlett, 2009, 685–703.
23 D. T. Gibson, Zbl. Bakt. Hyg. I. Abt. Orig. B, 1976, 162, 157–168.
24 A. M. Jeffrey, H. J. C. Yah, D. M. Jerina, T. R. Patel, J. F. Davey and
D. T. Gibson, Biochemistry, 1975, 14, 575–585.
25 (a) V. P. Bui, M. Nguyen, J. Hansen, J. Baker and T. Hudlicky,
Can. J. Chem., 2002, 80, 708–713; (b) J. R. Hudlicky, J. Hopskins-Hill
and T. Hudlicky, Synlett, 2011, 2891–2895.
26 J. P. Foster and F. Weinhold, J. Am. Chem. Soc., 1980, 102, 7211–7218.
27 A. Becke, J. Chem. Phys., 1993, 98, 5648–5652.
28 T. R. Cundari and W. J. Steves, J. Chem. Phys., 1993, 98, 5555–5565.
29 N. P. Labello, A. M. Ferreira and H. A. Kurtz, J. Comput. Chem., 2005,
26, 1464–1471.
30 M. J. T. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M.
A. Robb, J. R. Cheeseman, J. A. MontgomeryJr., T. Vreven, K. N. Kudin,
J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone,
B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson,
H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li,
J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo,
This journal is © The Royal Society of Chemistry 2012
Org. Biomol. Chem., 2012, 10, 4407–4416 | 4415