Organometallics
Article
4. Reaction of OsHCl(CO)(η2-O2)(PiPr3)2 with 2.0 equiv of
PCy3. PCy3 (17.9 mg, 0.064 mmol) was added to an NMR tube
containing a solution of OsHCl(CO)(η 2-O2)(PiPr3)2 (19.4 mg, 0.032
mmol) in toluene-d8 (0.4 mL) under an argon atmosphere. The
Social Fund is acknowledged. We thank Carmen Vicario for
technical assistance.
1
resulting mixture was heated at 120 °C for 70 min. 31P{1H} and H
REFERENCES
■
NMR spectra were recorded after this time. The 31P{1H} NMR
spectrum shows peaks assigned to OPiPr3 (δ 59) and OPCy3 (δ
50) in a 1:1 ratio, OsHCl(CO)(PiPr3)2 (δ 47), OsHCl(CO)(PCy3)2
(δ 37), and the mixed compound OsHCl(CO)(PiPr3)(PCy3) (6)
(δ(PiPr3) 43; δ(PCy3) 37; JP−P = 254) in a 1:1:2 ratio, PiPr3 (δ 19),
and PCy3 (δ 9). The 1H NMR spectrum shows the resonances
corresponding to the aforementioned species. In particular, we note a
virtual triplet at −32.7 ppm with JP−H coupling constants of 23 Hz,
assigned to 6.
(1) Wilkinson, S. G. In Comprehensive Organic Chemistry; Barton, D.,
Ollis, W. D., Eds.; Pergamon Press: Oxford, U.K., 1979; Vol. 1, p 644.
(2) (a) Schultz, M. J.; Sigman, M. S. Tetrahedron 2006, 62, 8227.
(b) Sigman, M. S.; Jensen, D. R. Acc. Chem. Res. 2006, 39, 221.
(c) Piera, J.; Backvall, J.-E. Angew. Chem., Int. Ed. 2008, 47, 3506.
̈
(d) Gligorich, K. M.; Sigman, M. S. Chem. Commun. 2009, 3854.
(e) Suzuki, T. Chem. Rev. 2011, 111, 1825.
(3) (a) ten Brink, G.-J.; Arends, I. W. C. E.; Sheldon, R. A. Science
2000, 287, 1636. (b) Enache, D. I.; Edwards, J. K.; Landon, P.;
Solsona-Espriu, B.; Carley, A. F.; Herzing, A. A.; Watanabe, M.; Kiely,
C. J.; Knight, D. W.; Hutchings, G. J. Science 2006, 311, 362. (c) Jiang,
B.; Feng, Y.; Ison, E. A. J. Am. Chem. Soc. 2008, 130, 14462.
(d) Gunanathan, C.; Shimon, L. J. W.; Milstein, D. J. Am. Chem. Soc.
2009, 131, 3146.
5. Reaction of OsHCl(CO)(η2-O2)(PiPr3)2 with 2.0 equiv of
PCy3 in the Presence of 8.0 equiv of PhCH2OH under an
Oxygen Atmosphere. PCy3 (9.8 mg, 0.035 mmol) was added to
an NMR tube containing a solution of OsHCl(CO)(η 2-O2)(PiPr3)2
(10.6 mg, 0.017 mmol) and benzyl alcohol (14.4 μL, 0.127 mmol) in
toluene-d8 (0.4 mL). The argon atmosphere was replaced by an
oxygen atmosphere. The resulting solution was heated to 120 °C for
(4) (a) Green, G.; Griffith, W. P.; Hollinshead, D. M.; Ley, S. V.;
1
30 min. 31P{1H} and H NMR spectra were recorded after this time.
Schroder, M. J. Chem. Soc., Perkin Trans. 1 1984, 681. (b) Hornstein,
̈
The 1H NMR spectrum shows the formation of 2.7 equiv of
benzaldehyde (δ 9.65, CHO) and water (very broad at about 3 ppm)
as well as resonances due to 2−4, OPiPr3, and OPCy3. The
31P{1H} NMR spectrum shows signals characteristic of 2−4, OPiPr3,
B. J.; Dattelbaum, D. M.; Schoonover, J. R.; Meyer, T. J. Inorg. Chem.
2007, 46, 8139. (c) Wang, Q.; Sheng, X.; Horner, J. H.; Newcomb, M.
J. Am. Chem. Soc. 2009, 131, 10629.
(5) (a) Bourgault, M.; Castillo, A.; Esteruelas, M. A.; Onate, E.; Ruiz,
̃
N. Organometallics 1997, 16, 636. (b) Esteruelas, M. A.; Modrego, F.
and OPCy3.
J.; Onate, E.; Royo, E. J. Am. Chem. Soc. 2003, 125, 13344.
̃
6. Catalytic Oxidations: General Procedure. The oxidation
reactions were carried out in a two-necked flask fitted with a condenser
and containing a magnetic stirring bar under 1 atm of O2 (N45
Alphagaz). The second neck was capped with a Suba-Seal to allow
samples to be removed by syringe without opening the system. The
reaction conditions were as follows: a 0.024 mmol portion of catalyst
was dissolved in 1 mL of a toluene solution containing 2.42 mmol
of the corresponding alcohol and 200 μL of p-xylene. The flask was
then immersed in a bath at 120 °C, and the solution was magnetically
stirred. The reactions were periodically checked by GC and GC-MS.
7. Catalytic Oxidations in the Presence of Molecular Sieves.
Molecular sieves 4 Å (250 mg) were placed in the flask. A 0.024 mmol
portion of catalyst was dissolved in 1 mL of a toluene solution
containing 2.42 mmol of the corresponding alcohol and 200 μL of
p-xylene. The flask was then immersed in a bath at 120 °C, and the
solution was magnetically stirred. The reactions were periodically
checked by GC and GC-MS.
(6) (a) Coleman, K. S.; Coppe, M.; Thomas, C.; Osborn, J. A.
Tetrahedron Lett. 1999, 40, 3723. (b) Dobler, C.; Mehltretter, G. M.;
̈
Sundermeier, U.; Eckert, M.; Militzer, H.-C.; Beller, M. Tetrahedron
Lett. 2001, 42, 8447.
(7) Esteruelas, M. A.; Oro, L. A. Adv. Organomet. Chem. 2001, 47, 1.
(8) (a) Esteruelas, M. A.; Sola, E.; Oro, L. A.; Werner, H.; Meyer, U.
J. Mol. Catal. 1988, 45, 1. (b) Esteruelas, M. A.; Sola, E.; Oro, L. A.;
Werner, H.; Meyer, U. J. Mol. Catal. 1989, 53, 43. (c) Andriollo, A.;
́
Esteruelas, M. A.; Meyer, U.; Oro, L. A.; Sanchez-Delgado, R. A.; Sola,
E.; Valero, C.; Werner, H. J. Am. Chem. Soc. 1989, 111, 7431.
(d) Esteruelas, M. A.; Valero, C.; Oro, L. A.; Meyer, U.; Werner, H.
Inorg. Chem. 1991, 30, 1159. (e) Esteruelas, M. A.; Oro, L. A.; Valero,
́
C. Organometallics 1992, 11, 3362. (f) Sanchez-Delgado, R. A.;
Rosales, M.; Esteruelas, M. A.; Oro, L. A. J. Mol. Catal. A: Chem. 1995,
96, 231.
(9) Esteruelas, M. A.; Oro, L. A.; Valero, C. Organometallics 1991, 10,
8. Disproportionation of Cinnamyl Alcohol Catalyzed by
Complex 2. Complex 2 (14.6 mg, 0.024 mmol) was dissolved in
1 mL of a toluene solution containing 2.42 mmol of cinnamyl alcohol
(308 μL, 2.4 mmol) and 200 μL of p-xylene. The flask was then
immersed in a bath at 120 °C, and the solution was magnetically stirred.
The reaction was periodically checked by GC and GC-MS. After 24 h
the chromatograms showed that 78% of the starting cinnamyl alcohol
had been converted into cinnamaldehyde and 2-phenylpropanol (ratio
1:1), along with a small amount of 3-phenylpropanal.
462.
(10) Esteruelas, M. A.; Herrero, J.; Lop
Organometallics 2001, 20, 3202.
(11) (a) Cobo, N.; Esteruelas, M. A.; Gonzal
Lopez, A. M.; Lucio, P.; Olivan, M. J. Catal. 2004, 223, 319.
(b) Esteruelas, M. A.; Gonzalez, F.; Herrero, J.; Lucio, P.; Olivan, M.;
Ruiz-Labrador, B. Polym. Bull. 2007, 58, 923.
́ ́
ez, A. M.; Olivan, M.
́
ez, F.; Herrero, J.;
́
́
́
́
(12) Esteruelas, M. A.; Sola, E.; Oro, L. A.; Meyer, U.; Werner, H.
Angew. Chem., Int. Ed. Engl. 1988, 27, 1563.
(13) Liu, C.; Wang, J.; Meng, L.; Deng, Y.; Li, Y.; Lei, A. Angew.
Chem., Int. Ed. 2011, 50, 5144.
ASSOCIATED CONTENT
* Supporting Information
Text giving experimental details. This material is available free
■
(14) (a) Suzuki, T.; Morita, K.; Matsuo, Y.; Hiroi, K. Tetrahedron
Lett. 2003, 44, 2003. (b) Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein,
D. J. Am. Chem. Soc. 2005, 127, 10840. (c) Izumi, A.; Obora, Y.;
Sakaguchi, S.; Ishii, Y. Tetrahedron Lett. 2006, 47, 9199. (d) Arita, S.;
Koike, T.; Kayaki, Y.; Ikariya, T. Chem. Asian J. 2008, 3, 1479.
(e) Bertoli, M.; Choualeb, A.; Lough, A. J.; Moore, B.; Spasyuk, D.;
Gusev, D. G. Organometallics 2011, 30, 3479. (f) Musa, S.;
Shaposhnikov, I.; Cohen, S.; Gelman, D. Angew. Chem., Int. Ed.
2011, 50, 3533. (g) Gowrisankar, S.; Neumann, H.; Beller, M. Angew.
Chem., Int. Ed. 2011, 50, 5139.
S
AUTHOR INFORMATION
Corresponding Author
■
ACKNOWLEDGMENTS
Financial support from the MICINN of Spain (Projects
CTQ2008-00810 and Consolider Ingenio 2010 CSD2007-
00006), the Departamento de Ciencia, Tecnologıa y Uni-
versidad del Gobierno de Arago
■
(15) Kunz, D. Angew. Chem., Int. Ed. 2007, 46, 3405.
(16) Casey, C. P.; Czerwinski, C. J.; Fusie, K. A.; Hayashi, R. K.
J. Am. Chem. Soc. 1997, 119, 3971.
́
(17) Esteruelas, M. A.; Hernan
Rubio, L. Organometallics 2008, 27, 799.
́ ́
dez, Y. A.; López, A. M.; Olivan, M.;
́
6406
dx.doi.org/10.1021/om200684m|Organometallics 2011, 30, 6402−6407