6864
G. Aridoss, K. K. Laali / Tetrahedron Letters 52 (2011) 6859–6864
16. Funabiki, K.; Komeda, T.; Kubota, K.; Matsui, M. Tetrahedron 2009, 65, 7457–
Acknowledgment
7463.
17. (a) Laali, K. K.; Gettwert, V. J. J. Org. Chem. 2001, 66, 35–40; (b) Laali, K. K.;
Gettwert, V. J. J. Fluorine. Chem. 2001, 107, 31–34; (c) Laali, K. K.; Borodkin, G. I.
J. Chem. Soc. Perkin Trans. 2 2002, 953–957; (d) Sarca, V. D.; Laali, K. K. Green
Chemistry 2004, 6, 245–248; (e) Laali, K. K.; Sarca, V. D.; Okazaki, T.; Brock, A.;
Der, P. Org. Biomol. Chem. 2005, 3, 1034–1042; (f) Sarca, V. D.; Laali, K. K. Green
Chemistry 2006, 8, 615–620; (g) Laali, K. K.; Okazaki, T.; Bunge, S. J. Org. Chem.
2007, 72, 6758–6762; (h) Hubbard, A.; Okazaki, T.; Laali, K. K. Aust. J. Chem.
2007, 60, 923–927; (i) Hubbard, A.; Okazaki, T.; Laali, K. K. J. Org. Chem. 2008,
73, 316–319; (j) Pavlinac, J.; Laali, K. K.; Zupan, M.; Stavber, S. Aust. J. Chem.
2008, 61, 946–955; (k) Pavlinac, J.; Zupan, M.; Laali, K. K.; Stavber, S.
Tetrahedron 2009, 65, 5625–5662; (l) Kalkhambkar, R. G.; Waters, S. N.; Laali,
K. K. Tetrahedron Lett. 2011, 52, 867–871; (m) Kalkhambkar, R. G.; Laali, K. K.
Tetrahedron Lett. 2011, 52, 1733–1737; (n) Aridoss, G.; Laali, K. K. Eur. J. Org.
Chem. 2011, 2827–2835; (o) Aridoss, G.; Laali, K. K. Eur. J. Org. Chem. 2011, 2,
6343–6355; (p) Aridoss, G.; Laali, K. K. J. Org. Chem. 2011, 76, 8088–8094.
18. Aridoss, G.; Sarca, V. D.; Ponder, J. F., Jr.; Crowe, J.; Laali, K. K. Org. Biomol. Chem.
2011, 9, 2518–2529.
We thank University of North Florida for support and Dr. Nelson
Zhao of this department for NMR assistance.
Supplementary data
Supplementary data (NMR analysis of the products and other
characterization data for the new compounds are furnished) asso-
ciated with this article can be found, in the online version, at
References and notes
1. Reddy, C. R.; Vijaykumar, J.; Grée, R. Synthesis 2010, 21, 3715–3723.
2. J. Escano, D. Bandyopadhyay, B.K. Banik, Abstracts of Papers, 238th, National
Meeting of the American Chemical Society, Washington, DC, Aug 16–20, 2009;
American Chemical Society: Washington, DC, 2009; ORGN-107.
3. Yadav, J. S.; Subba Reddy, B. V.; Pandurangam, T.; Raghavendra Rao, K. V.;
Praneeth, K.; Narayana Kumar, G. G. K. S.; Madavi, C.; Kunwar, A. C. Tetrahedron
Lett. 2008, 49, 4296–4301.
4. Maiti, S.; Biswas, S.; Jana, U. Synth. Commun. 2011, 41, 243–254.
5. Zhang, M.; Yang, H.; Cheng, Y.; Zhu, Y.; Zhu, C. Tetrahedron Lett. 2010, 51, 1176–
1179.
6. Chatterjee, P. N.; Roy, S. Tetrahedron 2011, 67, 4569–4577.
7. Kuninobu, Y.; Ueda, H.; Takai, K. Chem. Lett. 2008, 37(8), 878–879.
8. Yadav, J. S.; Subba Reddy, B. V.; Raghavendra Rao, K. V.; Narender, R.
Tetrahedron Lett. 2009, 50, 3963–3965.
9. Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Hidai, M.; Uemura, S. J. Org. Chem.
2004, 69, 3408–3412.
10. Sanz, R.; Miguel, D.; Martínez, A.; Álvarez-Gutiérrez, J. M.; Rodríuez, F. Org. Lett.
2007, 9(4), 727–730.
11. Huang, W.; Wang, J.; Shen, Q.; Zhou, X. Tetrahedron 2007, 63, 11636–11643.
12. Arcadi, A.; Alfonsi, M.; Chiarini, M.; Marinelli, F. J. Organomet. Chem. 2009, 694,
576–582.
13. Ji, W.-h.; Pan, Y.-m.; Zhao, S.-y.; Zhan, Z.-p. Synlett 2008, 3046–3052.
14. Cadierno, V.; Gimeno, J.; Nebra, N. Adv. Synth. Catal. 2007, 349, 382–394.
15. Reddy, C. R.; Srikanth, B.; Narsimha Rao, N.; Shin, D.-S. Tetrahedron 2008, 64,
11666–11672.
19. General procedure for propargylation of diketones and 4-hydroxycoumarins: The
desired ionic liquid (2 mL if the reactants were liquids and 3.00–3.5 mL for
solids) was charged into an oven-dried Schlenk tube under
a nitrogen
atmosphere. The Lewis acid (10 mol %) was then introduced and was
dissolved or immobilized in the IL upon sonication (for about 15 min). No
catalyst was used in entries 1 and 9 in Table 1. The respective 1,3-diketone or
the 4-hydroxycoumarin was then introduced into the Schlenk tube under a
nitrogen atmosphere followed by the desired propargylic alcohol. The reaction
mixture was magnetically stirred, initially at rt for about 10 min followed by
stirring in a pre-heated oil bath at 30–60 °C (as specified; refer to Tables 1–3),
until completion (monitored by TLC). Once the reaction was over, the contents
were cooled to rt and extracted with dry diethyl ether or with EtOAc–Hexane
(2:3)—(until the final extraction showed no spot corresponding to the starting
material or to the product). The combined organic extracts were washed with
DI water, dried with MgSO4 and concentrated to give the crude product, which
upon purification through column chromatography furnished the desired
products. In some cases the crude reaction mixture obtained upon evaporation
of the combined organic extracts was directly charged onto a column for
purification without a water wash.
Re-use and recycling of IL: After extraction, the ionic liquid was dried under
high-vacuum at 60–70 °C for about 6 h and re-used for successive runs.
20. Maraval, V.; Duhayon, C.; Coppel, Y.; Chauvin, R. Eur. J. Org. Chem. 2008, 5144–
5156.