ORGANIC
LETTERS
2012
Vol. 14, No. 1
74–77
Pd-Catalyzed Olefination of
Perfluoroarenes with Allyl Esters
Zejiang Li, Yuexia Zhang, and Zhong-Quan Liu*
State Key Laboratory of Applied Organic Chemistry, Lanzhou University,
Lanzhou Gansu 730000, P. R. China
Received October 23, 2011
ABSTRACT
An efficient Pd(II)-catalyzed direct olefination of perfluoroarenes with allyl esters is demonstrated. Under the typical conditions, the coupling
reaction of fluorinated-arenes with allylic esters proceeded via a β-H elimination rather than a β-OAc elimination to give the corresponding
γ-substituted allylic esters.
Fluorinatedarenesandderivativesrepresent alargeclass
of important pharmaceuticals and agrochemicals.1 In the
past decades, a variety of methods have been developed to
prepare these useful compounds.2 Recently, Zhang,3 Zhao,4
Hirano and Miura,5 Su,6 and Shi7 et al. reported several
efficient protocols to synthesize substituted fluoroarenes
by transition-metal-catalyzed coupling reactions of per-
fluoroarenes via CÀH bond activation to form some new
CÀC bonds. Of particular interest is the oxidative Heck
reaction of ArH with alkenes catalyzed by palladium
which is also named the FujiwaraÀMoritani reaction.8
Although many efficient oxidative Heck-type coupling
reactions of alkenes with arenes and heteroarenes have
been developed, there is only one example of the direct
olefination of highly electron-deficient perfluoroarenes via
a FujiwaraÀMoritani reaction reported by Zhang et al. in
2010.3a However, only the electron-deficient olefins, ali-
phatic olefins, and styrene derivatives were effective sub-
strates in that system. Herein, we wish to report a first
(1) For selected reviews, see: (a) Meyer, E. A.; Castellano, R. K.;
Diederich, F. Angew. Chem., Int. Ed. 2003, 42, 1210. (b) Kirsch, P.
Modern Fluoroorganic Chemistry; Wiley-VCH: Weinheim, Germany,
2004. (c) M€uller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(d) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev.
2008, 37, 320. (e) Amii, H.; Uneyama, K. Chem. Rev. 2009, 109, 2119.
(2) For selected examples, see: (a) Harper, R. J., Jr.; Soloski, E. J.;
ꢀ
Tamborski, C. J. Org. Chem. 1964, 29, 2385. (b) Albeniz, A. C.; Espinet,
P.; Martn-Ruiz, B.; Milstein, D. J. Am. Chem. Soc. 2001, 123, 11504.
(c) Hull, K. L.; Anani, W. Q.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128,
7134. (d) Sandford, G. J. Fluorine Chem. 2007, 128, 90. (e) Furuya, T.;
Ritter, T. J. Am. Chem. Soc. 2008, 130, 10060. (f) Furuya, T.; Kaiser,
H. M.; Ritter, T. Angew. Chem., Int. Ed. 2008, 47, 5993. (g) Ball, N. D.;
Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 3796. (h) Furuya, T.; Strom,
A. E.; Ritter, T. J. Am. Chem. Soc. 2009, 131, 1662. (i) Powers, D. C.;
Ritter, T. Nat. Chem. 2009, 1, 302. (j) Wang, X.; Mei, T.-S.; Yu, J.-Q. J.
Am. Chem. Soc. 2009, 131, 7520. (k) Watson, D. A.; Su, M.; Teverovskiy,
G.; Zhang, Y.; Fortanet, J. G.; Kinzel, T.; Buchwald, S. L. Science 2009,
325, 1661. (l) Chan, K. S. L.; Wasa, M.; Wang, X.; Yu, J.-Q. Angew.
Chem., Int. Ed. 2011, 50, 9081.
(3) (a) Zhang, X.; Fan, S.; He, C.-Y.; Wan, X.; Min, Q.-Q.; Yang, J.;
Jiang, Z.-X. J. Am. Chem. Soc. 2010, 132, 4506. (b) He, C.-Y.; Fan, S.;
Zhang, X. J. Am. Chem. Soc. 2010, 132, 12850. (c) Fan, S.; He, C.-Y.;
Zhang, X. Chem. Commun. 2010, 46, 4926.
(4) Sun, Z.-M.; Zhang, J.; Manan, R. S.; Zhao, P. J. Am. Chem. Soc.
2010, 132, 6935.
(8) For selected excellent reviews of FujiwaraÀMoritani oxidative
Heck reactions, see: (a) Moritani, I.; Fujiwara, Y. Synthesis 1973, 524.
(b) Dyker, G. Angew. Chem., Int. Ed. 1999, 38, 1698. (c) Fujiwara, Y.;
Jia, C. Pure Appl. Chem. 2001, 73, 319. (d) Jia, C.; Kitamura, T.;
Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633. (e) Ritleng, V.; Sirlin, C.;
Pfeffer, M. Chem. Rev. 2002, 102, 1731. (f) Kakiuchi, F.; Chatani, N.
Adv. Synth. Catal. 2003, 345, 1077. (g) Chen, X.; Engle, K. M.; Wang,
D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094. (h) Lyons, T. W.;
Sanford, M. S. Chem. Rev. 2010, 110, 1147. (i) Satoh, T.; Miura, M.
Synthesis 2010, 3395. (j) Le Bras, J.; Muzart, J. Chem. Rev. 2011, 111,
1170. For selected examples, see:(a) Boele, M. D. K.; van Strijdonck, G.
P. F; de Vries, A. H. M.; Kamer, P. C. J.; de Vries, J. G.; van Leeuwen, P.
W. N. M. J. Am. Chem. Soc. 2002, 124, 1586. (b) Cai, G.; Fu, Y.; Li, Y.;
Wan, X.; Shi, Z. J. Am. Chem. Soc. 2007, 129, 7666. (c) Patureau, F. W.;
Glorius, F. J. Am. Chem. Soc. 2010, 132, 9982. (d) Li, H.; Li, Y.; Zhang,
X.-S.; Chen, K.; Wang, X.; Shi, Z.-J. J. Am. Chem. Soc. 2011, 133, 15244.
(9) For selected reviews, see: (a) Trost, B. M. Acc. Chem. Res. 1980,
13, 385. (b) Tsuji, J. Pure Appl. Chem. 1999, 71, 1539. (c) Marshall, J. A.
Chem. Rev. 2000, 100, 3163. (d) Schobert, R.; Gordon, G. J. Curr. Org.
Chem. 2002, 6, 1181. (e) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003,
103, 2921. (f) Pan, D.; Jiao, N. Synlett 2010, 1577.
(5) Yao, T.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed.
2011, 50, 2990.
(6) Wei, Y.; Su, W. J. Am. Chem. Soc. 2010, 132, 16377.
(7) Li, H.; Liu, J.; Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Org. Lett. 2011, 13,
276.
r
10.1021/ol202859b
Published on Web 12/08/2011
2011 American Chemical Society