Table 2 Spectrocopic and photophysical data of 4a and 4ba
lmax (nm) (e (MÀ1cmÀ1))
tF (ns)
b
Fe
Polymer
4a
4b
464 (13200), 493 (63100), 586 (7380), 680 (26700), 747 (29000)
463 (181400), 490 (101300), 583 (12300), 672 (30200), 745 (45800)
1.32 Æ 0.02
1.19 Æ 0.02
0.22
0.23
a
b
In 2MeTHF at 298 K. Reference used is rhodamine 6G (FF = 0.95; R.F. Kubin and A.N. Fletcher J. Lumin. 1982, 27, 455.
CT band in the red region of the spectrum lead to the lowest
band gap ever observed for zinc(II) porphyrin-containing
materials. The use of quinone diimine units in the polymer
backbone is prone to generate low-lying CT states, and in
some cases with large absorptivities. Therefore such type of
conjugated polymers represents good candidates for solar cell
design. Moreover, the intense phosphorescence makes them
also candidates for PLED applications in the near-IR region.
This research was supported by the Natural Sciences
and Engineering Research Council of Canada (NSERC), the
´
Centre d’Etudes sur les Mate
l’Universite de Sherbrooke (CEMOPUS), and the Fonds
Quebecois pour la Recherche en Sciences Naturelles et
´
riaux Optiques et Polymeres de
´
´
´
Technologie (FQRNT).
Notes and references
Fig. 3 HOMO and LUMO representations for 4a.
1 W. Zhou, P. Shen, B. Zhao, P. Jiang, L. Deng and S. Tan,
J. Polym. Sci., Part A: Polym. Chem., 2011, 49, 2685.
2 X. Xu, H. Chen, E. Huo, X. Cai, Y. Li and Q. Jiang, Polym. Bull.,
2008, 60, 7.
3 N. Wang, F. Lu, C. Huang, Y. Li, M. Yuan, X. Liu, H. Liu,
L. Gan, L. Jiang and D. Zhu, J. Polym. Sci., Part A: Polym. Chem.,
2006, 44, 5863.
4 J. Zhao, B. Li and Z. Bo, Chin. Sci. Bull., 2006, 51, 1287.
5 K. Takahashi, Y. Takano, T. Yamaguchi, J.-I. Nakamura,
C. Yokoe, K. Murata and Kazuhiko, Synth. Met., 2005, 155, 51.
6 W. Zhuang, Y. Zhang, Q. Hou, L. Wang and Y. Cao, J. Polym. Sci.,
Part A: Polym. Chem., 2006, 44, 4174.
with the literature data for similar zinc(II) porphyrin compounds.9c
The phosphorescence of the porphyrin unit, which was never
observed before for the bisethynyl derivatives, such as 3, falls at the
right range for zinc(II) porphyrins.14 Interestingly, the 680 nm
band in 4b decays with two exponentials (1.2 ns and 35 ms)
indicating evidence for delayed fluorescence. Such behaviour was
also clearly analyzed by us for the analogous polymers shown in
Chart 3.11b
The observed emissions are consequently S2-S0 and T2-S0
transitions, hence violating Kasha’s rule. This appears unusual
at first glance but in fact it is not for conjugated polymers
built upon quinone diimine fragments. Indeed, all the poly-
mers investigated so far (see those of Chart 3 and others)11,13
exhibit exactly S2 - S0 and T2 -S0 emissions with no
emission arising from the low-energy CT state. In this work
the same situation occurs, except it is not possible to verify
whether other emission occurs at l Z 850 nm due to the
detection limit. Interestingly, the total emission quantum
yields are B0.23 (mostly phosphorescence) for both 4a and
4b in solution at 298 K, which is good for polymers. Such data
make these new polymers obviously candidates for polymer
light emitting diodes (PLED), but with an emission maximum
at 820 nm, near IR applications are obviously targeted.
Polymers 4a and 4b are built upon quinone diimines
exhibiting a structure resembling to PANI in its perigraniline
(fully oxidized) form in which a luminescent aromatic group,
here zinc(II) porphyrin is incorporated. They also exhibit a
7 K. T. Nielsen, H. Spanggaard and F. C. Krebs, Displays, 2004,
25, 231.
8 J. C. Ostrowski, K. Susumu, M. R. Robinson, M. J. Therien and
G. C. Bazan, Adv. Mater., 2003, 15, 1296.
9 (a) G. Langlois, S. M. Aly, C. P. Gros, J.-M. Barbe and
P. D. Harvey, New J. Chem., 2011, 35, 1302; (b) L. Liu, L. Hu,
H. Fu, Q.-M. Fu, S.-Z. Liu, Z.-L. Du, W.-Y. Wong and
P. D. Harvey, J. Organomet. Chem., 2011, 696, 1319;
(c) F.-L. Jiang, D. Fortin and P. D. Harvey, Inorg. Chem., 2010,
49, 2614; (d) L. Liu, D. Fortin and P. D. Harvey, Inorg. Chem.,
2009, 48, 5891.
10 H. Zhan, S. Lamare, A. Ng, T. Kenny, H. Guernon, W.-K. Chan,
A. B. Djurisic, P. D. Harvey and W.-Y. Wong, Macromolecules,
2011, 44, 5155.
11 (a) D. Fortin, S. Cle
P. D. Harvey, Inorg. Chem., 2009, 48, 446; (b) K. Gagnon,
J.-F. Berube, D. Bellows, L. Caron, S. M. Aly, A. Wittmeyer,
ment, K. Gagnon, J.-F. Berube and
´ ´ ´
´
´
A. Abd-El-Aziz, D. Fortin and Pierre D. Harvey, Organometallics,
2008, 27, 2201.
12 K. Gagnon, S. M. Aly, D. Fortin, A. S. Abd-El-Aziz and
P. D. Harvey, J. Inorg. Organomet. Polym. Mater., 2009, 19, 28.
13 F. Cheng and A. Andronov, Chem.–Eur. J., 2006, 12, 5053.
14 S. Faure, C. Stern, E. Espinosa, J. Douville, R. Guilard and
P. D. Harvey, Chem.–Eur. J., 2005, 11, 3469.
c
10944 Chem. Commun., 2011, 47, 10942–10944
This journal is The Royal Society of Chemistry 2011