S. Kuno et al. / Bioorg. Med. Chem. Lett. 21 (2011) 7189–7192
7191
Table 1
Enzyme inhibitory activity of the amine hydrochlorides 15 and 16 against four glycosidases
HO
OH
N+
OH
H
H
N+
HO
HO
HO
(CH2)7CH3
(CH2)7CH3
HO
HO
H
Cl-
H
Cl-
15
16
Compound
IC50 (lM)
b-Galactosidase (bovine liver)
b-Galactosidase (Aspergillus oryzae)
b-Glucosidase (almonds)
a-Galactosidase (green coffer beans)
15a
16
4.5
2.9
85
NT
8.1
47
4.5
NI
NI, IC50 >1 mM; NT, not tested.
a
This compound did not show any notable inhibitory activity against b-mannosidase (helix pomatia),
a
-fucosidase (human placenta), or a-mannosidase (jack beans).
assay. 15 was first assayed16 for inhibitory activity against seven
commercially available glycosidases: b-galactosidase (bovine liver
and aspergillus oryzae), b-glucosidase (almonds), b-mannosidase
Gehrke, S.; Erfan, S.; Cribiu, R. Carbohydr. Res. 2008, 343, 1675; (f) Krishna, P. R.;
Reddy, P. S. Synlett 2009, 2, 209; (g) Ramstadius, C.; Hekmat, O.; Eriksson, L.;
Stalbrand, H.; Cumpstey, I. Tetrahedron: Asymmetry 2009, 20, 795; (h) Chang,
Y.-K.; Lo, H.-J.; Yan, T.-H. Org. Lett. 2009, 11, 4278; (i) Shing, T. K. M.; Cheng, H.
M. J. Org. Chem. 2010, 75, 3522.
(helix pomatia),
(green coffee beans), and
hand, 16 was tested against b-galactosidase (bovine liver), b-gluco-
sidase (almonds), and -galactosidase (green coffee beans). As
listed in Table 1 and 15 possessed inhibitory activities against
two b-galactosidases, b-glucosidase, and -galactosidase. Mean-
a-fucosidase (human placenta),
a-galactosidase
4. Suzuki, Y.; Ogawa, S.; Sakakibara, Y. Perspect. Med. Chem. 2009, 3, 7.
5. Ogawa, S.; Iwasawa, Y.; Nose, T.; Suami, T.; Ohba, S.; Ito, M.; Saito, Y. J. Chem.
Soc., Perkin Trans. 1 1985, 903.
a-mannosidase (Jack beans). On the other
6. For relevant reports, see: (a) Ogawa, S.; Ashiura, M.; Uchida, C.; Watanabe, S.;
Yamazaki, C.; Yamagishi, K.; Inokuchi, J. Bioorg. Med. Chem. Lett. 1996, 6, 929;
(b) Ogawa, S.; Matsunaga, Y. K.; Suzuki, Y. Bioorg. Med. Chem. 2002, 10, 1967; (c)
Matsuda, J.; Suzuki, O.; Oshima, A.; Yamamoto, Y.; Noguchi, A.; Takimoto, K.;
Itoh, M.; Matsuzaki, Y.; Yasuda, Y.; Ogawa, S.; Sakata, Y.; Nanba, E.; Higaki, K.;
Ogawa, Y.; Tominaga, L.; Ohno, K.; Iwasaki, H.; Watanabe, H.; Brady, R. O.;
Suzuki, Y. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 15912; (d) Lin, H.; Sugimoto, Y.;
Ohsaki, Y.; Ninomiya, H.; Oka, A.; Taniguchi, M.; Ida, H.; Eto, Y.; Ogawa, S.;
Matsuzaki, Y.; Sawa, M.; Inoue, T.; Higaki, K.; Nanba, E.; Ohno, K.; Suzuki, Y.
Biochim. Biophys. Acta Mol. Basis Dis. 2004, 1689, 219; (e) Ogawa, S.; Sakata, Y.;
Ito, N.; Watanabe, M.; Kabayama, K.; Itoh, M.; Korenaga, T. Bioorg. Med. Chem.
2004, 12, 995; (f) Lei, K.; Ninomiya, H.; Suzuki, M.; Inoue, T.; Sawa, M.; Iida, M.;
Ida, H.; Eto, Y.; Ogawa, S.; Ohno, K.; Suzuki, Y. Biochim. Biophys. Acta Mol. Basis
Dis. 2007, 1772, 587; (g) Suzuki, Y. Cell. Mol. Life Sci. 2008, 65, 351; (h) Luan, Z.;
Ninomiya, H.; Ohno, K.; Ogawa, S.; Kubo, T.; Iida, M.; Suzuki, Y. Brain Dev. 2010,
32, 805; (i) Luan, Z.; Li, L.; Ninomiya, H.; Ohno, K.; Ogawa, S.; Kubo, T.; Iida, M.;
Suzuki, Y. Blood Cells Mol. Dis. 2010, 44, 48; (j) Jo, H.; Yugi, K.; Ogawa, S.; Suzuki,
Y.; Sakakibara, Y. J. Proteomics Bioinform. 2010, 3, 104.
a
a
while, 16 was shown to have a cross-inhibitory activity toward
b-galactosidase (bovine liver) and b-glucosidase. It is interesting
to note that 15, with a b-galacto configuration, inhibited both b-
galactosidase and b-glucosidase,17 moreover, its activity against
b-glucosidase was stronger than that exhibited by b-gluco-type
16. Conversely, 16 inhibited b-galactosidase (bovine liver) more
effectively than b-glucosidase. Although a design of new glycosi-
dase inhibitors has been carried out on the basis of a simple
assumption that potent inhibitors are likely to be good structural
mimics of the related substrates, the present results allow us to
give further consideration to
relationship.
a structure–inhibitory activity
7. Characterization data for compound 7: ½a 2D5 +220° (c 1.0, CHCl3); 1H NMR
ꢁ
(400 MHz, CDCl3):
d 1.42 and 1.50 (2s, each 3H, CMe2), 4.37 (t, 1H,
J1,2 = J2,3 = 5.3 Hz, H-2), 4.76 (d, 1H, J2,3 = 5.5 Hz, H-3), 5.42, 5.45 (2s, each
1H, CH2), 5.67 (m, 1H, H-1), 5.78 (broad d, 1H, J5,6 = 10.1 Hz, H-5), 6.32 (dd,
1H, J1,6 = 1.8, J5,6 = 10.1 Hz, H-6), 7.40–7.42 (m, 2H, Ph), 7.52–7.54 (m, 1H, Ph),
8.03–8.05 (m, 2H, Ph); 13C NMR (100 MHz, CDCl3): d 26.22, 27.89, 71.06,
73.30, 76.43, 109.25, 120.54, 125.23, 128.29, 129.71, 129.88, 130.15, 133.08,
138.31, 165.84; HR-ESI-MS: 309.1100 (C17H18O4Na+, [M+Na]+; calcd
309.1097).
Acknowledgments
The authors would like to thank Drs. Ryuichi Sawa and Yoji
Umezawa (Institute of Microbial Chemistry, Tokyo) for the mea-
surement of high resolution mass spectra, Professors Katsumi Hi-
gaki, Eiji Nanba, and Kousaku Ohno for the bioassays (Tottori
University, Yonago), Ms. Yoko Sakata for the discussion on prepara-
tive work, and Messrs. Masanori Yamaguchi, Akihiro Tomoda and
Yuichi Kita (Hokko Chemical Industry Co. Ltd, Atsugi) for their kind
provision of (+)-proto- and (ꢀ)-vibo-quercitols.
8. To avoid ambiguity, this compound should be named as 3,4-O-isopropylidene-
5a-carba-b-L-arabino-hex-5(5a)-enopyranosyl bromide according to the
carbasugar nomenclature. Nevertheless, the authors use the term ‘
diol’ instead of ‘b-bromo diol’ in the text. The reason is why we regard this
intermediate compound as an -valienamine derivative, which is a versatile
precursor to N-ocyl-4-epi-b-valienamine (NOEV). Additionally, the
conformations of the b-arabino carbasugars are well coincident with the
a-bromo
a
a-
galacto configured compounds. For the nomenclature of carbasugars, see the
IUPAC-IUBMB Nomenclature of Carbohydrates (Recommendation 1996:
Carbohydr. Res. 1997, 297, 1).
References and notes
9. The structures of the
a-bromo diol and the epoxide were assigned as shown
1. (a) Ogawa, S.; Uetsuki, S.; Tezuka, Y.; Morikawa, T.; Takahashi, A.; Sato, K.
Bioorg. Med. Chem. Lett. 1999, 9, 1493; (b) Takahashi, A.; Kanbe, K.; Tamamura,
T.; Sato, K. Anticancer Res. 1999, 3807.
below. The two compounds were completely separable using
column and were fully characterized.
a silica gel
O
2. For relevant reports, see: (a) Ogawa, S.; Aoyama, H.; Tezuka, Y. J. Carbohydr.
Chem. 2001, 20, 703; (b) Ogawa, S.; Ohishi, Y.; Asada, M.; Tomoda, A.;
Takahashi, A.; Ooki, Y.; Mori, M.; Itoh, M.; Korenaga, T. Org. Biomol. Chem. 2004,
2, 884; (c) Ogawa, S.; Asada, M.; Ooki, Y.; Mori, M.; Itoh, M.; Korenaga, T. Bioorg.
Med. Chem. 2005, 13, 4306; (d) Ogawa, S.; Tezuka, Y. Bioorg. Med. Chem. Lett.
2006, 16, 5238; (e) Ogawa, S.; Kanto, M. J. Nat. Prod. 2007, 70, 493; (f)
Wacharasindhu, S.; Worawalai, W.; Rungprom, W.; Phuwapraisirisan, P.
Tetrahedron Lett. 2009, 50, 2189.
3. For recent references concerning synthetic approaches to valienamine
derivatives: (a) Chang, Y.-K.; Lee, B.-Y.; Kim, D. J.; Lee, G. S.; Jeon, H. B.; Kim,
K. S. J. Org. Chem. 2005, 70, 3299; (b) Cumpstey, I. Tetrahedron Lett. 2005, 46,
6257; (c) Lysek, R.; Schuetz, C.; Favre, S.; O’Sullivan, A. C.; Pillonel, C.; Kruelle,
T.; Jung, P. M. J.; Clotet-Codina, I.; Este, J. A.; Vogel, P. Bioorg. Med. Chem. 2006,
14, 6255; (d) Scaffidi, A.; Stubbs, K. A.; Dennis, R. J.; Taylor, E. J.; Davies, G. J.;
Vocadlo, D. J.; Stick, R. V. Org. Biomol. Chem. 2007, 5, 3013; (e) Cumpstey, I.;
O
OH
OH
O
O
HO
Br
O
10. The spectroscopic data of the synthetic NOEV as a free amine was identical to
previously reported data6c,e; ½a 2D5 +3.0° (c 1.0, MeOH); 1H NMR (400 MHz,
ꢁ
CD3OD): d 0.89 (t, 3H, J7 ,8 = 6.9 Hz, H-80), 1.30–1.37 (10H, H-30, 40, 50, 60, and
70), 1.48–1.56 (m, 2H, H-20), 2.54–2.58, 2.72–2.76 (each m, each 1H, H-10a and
H-10b), 3.11 (dd, 1H, J1,5a = 1.8, J1,2 = 8.2 Hz, H-1), 3.44 (dd, 1H, J3,4 = 4.1,
J2,3 = 10.1 Hz, H-3), 3.70 (dd, 1H, J1,2 = 8.2, J2,3 = 10.1 Hz, H-2), 4.12 (broad s, 2H,
CH2), 4.15 (d, 1H, J3,4 = 4.1 Hz, H-4), 5.71 (d, 1H, J1,5a = 2.3 Hz, H-5a); 13C NMR
(100 MHz, CD3OD): d 14.43, 23.71, 28.42, 30.38, 30.60, 30.88, 32.98, 46.87,
61.78, 63.89, 68.13, 70.78, 73.85, 125.13, 140.73. In addition, biological
activities were found to be in accordance with the sample prepared by the
reported procedure.6c
0
0