588
N.V. Kulkarni et al. / Journal of Molecular Structure 1006 (2011) 580–588
[11] T.C. Schenck, J.M. Dowens, C.R.C. Milne, P.B. Mackenzie, H. Boucher, J. Whelan,
B. Bosnich, Inorg. Chem. 24 (1985) 2334–2337.
[12] F. Meyer, A. Jacobi, B. Nuber, P. Rutsch, L. Zsolnai, Inorg. Chem. 37 (1998)
1213–1218;
A.J. Vincent, M. Kumar, M. Jose, L. Laurent, N. Pilar, G.E. Espana, R.A. Jose, L.V.
Santiago, E. Beatriz, J. Org. Chem. 64 (1999) 6135–6146.
[13] S.E. Sherman, S.J. Lippard, Chem. Rev. 87 (1987) 1153–1181.
[14] N.V. Kulkarni, V.K. Revankar, J. Coord. Chem. 64 (2011) 725–741.
[15] S. Adsule, V. Barve, D. Chen, F. Ahmed, Q.P. Dou, S.B. Padhye, F.H. Sarkar, J. Med.
Chem. 49 (2006) 7242–7246.
[16] A.I. Vogel, A Text Book of Quantitative Inorganic Analysis, third ed., Longman
Green and Co. Ltd., London, 1961.
[17] A.K. Sen, S.K. Gupta, J. Ind. Chem. Soc. 39 (1962) 628–634.
[18] M.S. Shahabuddin, M. Gopal, Sathees C. Raghavan, J. Cancer Mol. 3 (2007) 139–
146.
in the applied potential range where as ligand and other complexes
are found to be electrochemically innocent. Ligand possesses sig-
nificant activity against microbes which is further enhanced upon
complexation. The observations made in DNA binding study of li-
gand and its complexes interacting with E. coli DNA reveal the
moderate intercalative mode of interaction of the compounds
which may be the cause of their antimicrobial activity. The CuII
complex has exhibited higher binding ability with DNA which is
correlated to the significant antimicrobial activity exhibited by
the complex.
[19] J.A. Glasel, Biotechniques 18 (1995) 62–63.
Acknowledgments
[20] N. Li, Y. Ma, C. Yang, L. Guo, X. Yang, Biophys. Chem. 116 (2005) 199–205.
[21] S. Satyanarayana, J.C. Dabrowiak, J.B. Chaires, Biochemistry 31 (1992) 9319–
9324.
[22] S. Arounaguiri, B.G. Maiya, Inorg. Chem. 35 (1996) 4267–4270.
[23] A. Arslantas, A.K. Devrim, H. Necefoglu, Int. J. Mol. Sci. 8 (2007) 564–571.
[24] W.J. Geary, Coord. Chem. Rev. 7 (1971) 81–122.
[25] V.K. Reddy, Indian J. Chem. 41A (2002) 2046–2053.
[26] S. Budagumpi, M.P. Sathisha, N.V. Kulkarni, G.S. Kurdekar, V.K. Revankar, J. Incl.
Phenom. Macrocycl. Chem. 66 (2010) 327–333.
The authors thank Department of chemistry and USIC, Karnatak
University, Dharwad for providing spectral and analytical facility.
Recording of FAB mass spectra (CDRI Lucknow), ESR spectrum
(IIT Bombay) are gratefully acknowledged. The authors (NVK, AK
and SB) thank Karnatak University, Dharwad and University Grant
Commission for providing the Nilekani Scholarship and RFSMS.
[27] A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier Publishing Company,
New York, 1968.
[28] J.C. Bailar, H.J. Emeleus, R. Nyholm, A.F.T. Dickenson, Comprehensive Inorganic
Chemistry, vol. 3, Pergamon Press, 1975.
References
[29] A.E. Martwell, M. Calvin, Chemistry of the Metal Chelate Compounds, Prentice
Hall, New York, 1952. p. 214;
[1] H.D. Hollis Showalter, J.L. Johnson, J.M. Hoftiezer, W.R. Turner, L.M. Werbel,
W.R. Leopold, J.L. Shillis, R.C. Jackson, E.F. Elslagert, J. Med. Chem. 30 (1987)
121–131;
S.A.F. Rostom, M.A. Shalaby, M.A. El-Demellawy, Eur. J. Med. Chem. 38 (2003)
959–974.
[2] A.K. Tewari, A. Mishra, Bioorg. Med. Chem. 9 (2001) 715–718.
[3] R.H. Wiley, P. Wiley, Pyrazolones, Pyrazolidones and Derivatives, John Wiley
and Sons, New York, 1964.
[4] S.L. Janus, A.Z. Magdif, B.P. Erik, N. Claus, Monatsh. Chem. 130(1999) 1167–1174.
[5] V. Michon, C.H. Du Penhoat, F. Tombret, J.M. Gillardin, F. Lepage, L. Berthon,
Eur. J. Med. Chem. (1995) 147–155.
[6] I. Yildirim, N. Ozdemir, Y. Akçamur, M. Dinçer, O. Andaç, Acta Crystallogr. 61
(2005) 256–258.
[7] D.M. Bailey, P.E. Hansen, A.G. Hlavac, E.R. Baizman, J. Pearl, A.F. Defelice, M.E.
Feigenson, J. Med. Chem. 28 (1985) 256–260.
[8] C.K. Chu, J. Cutler, J. Heterocycl. Chem. 23 (1986) 289–319.
[9] M.R. Grimmett, in: D. Barton, W.D. Ollis (Eds.), Obshchaya Comprehensive
Organic Chemistry, vol. 8, Pergamon, Oxford, 1979.
R.L. Dutta, A. Syamal, Elements of Magnetochemistry, second ed., EW Press,
1993.
[30] M. Munakata, L.P. Wu, M. Yamamoto, T. Kuroda-Sowa, M. Maekawa, S. Kawata,
S. Kitagawa, J. Chem. Soc. Dalton Trans. (1995) 4099–4106.
[31] C.L. Bailey, R.D. Bereman, D.P. Rillema, Inorg. Chem. 25 (1986) 3149–3153.
[32] P.J. Lukes, A.C. McCregor, T. Clifford, J.A. Crayston, Inorg. Chem. 31 (1992)
4697–4699.
[33] A. Shah, R. Qureshi, A.M. Khan, R.A. Khera, F.L. Ansari, J. Braz. Chem. Soc. 21
(2010) 447–451.
[34] V.A. Bloomfield, D.M. Crothers, I. Tinoco, Physical Chemistry of Nucleic Acids,
Harper and Row, New York, 1974. pp. 432–434;
A.M. Pyle, J.P. Rehmann, R. Meshoyrer, C.V. Kumar, N.J. Turro, J.K. Barton, J. Am.
Chem. Soc. 11 (1989) 3051–3058.
[35] V. Rajendiran, R. Karthik, M. Palaniandavar, H. Stoeckli-Evans, V.S. Periasamy,
M.A. Akbarsha, S.S. Bangalore, H. Krishnamurthy, Inorg. Chem. 46 (2007)
8208–8221.
[36] A. Arslantas, A.K. Devrim, N. Kaya, N. Necefoglu, Int. J. Mol. Sci. 7 (2006) 111–
118.
[10] M. Munakata, L.P. Wu, M. Yamamoto, T. Kuroda-Sowa, M. Maekawa, S. Kawata,
S. Kitagawa, J. Chem. Soc. Dalton Trans. (1995) 4099–4106.