N. K. Gusarova et al. / Tetrahedron Letters 52 (2011) 6985–6987
6987
2669–2677; (b) Kawai, T.; Hasegawa, Y.; Adachi, T. U.S. Patent WO 2007/
102271, 2007; Chem. Abstr. 2007, 147, 368034.; (c) Panneerselvam, A.; Nguyen,
C. Q.; Waters, J.; Malik, M. A.; O’Brien, P.; Raftery, J.; Helliwell, M. Dalton Trans.
2008, 4499–4506; (d) Hasegawa, Y.; Adachi, T.; Tanaka, A.; Afzaal, M.; O’Brien,
P.; Doi, T.; Hinatsu, Y.; Fujita, K.; Tanaka, K.; Kawai, T. J. Am. Chem. Soc. 2008,
130, 5710–5717; (e) Maneeprakorn, W.; Nguyen, C. Q.; Malik, M. A.; O’Brien, P.;
Raftery, J. Dalton Trans. 2009, 2103–2108; (f) Panneerselvam, A.; Nguyen, C. Q.;
Malik, M. A.; O’Brien, P.; Raftery, J. J. Mater. Chem. 2009, 19, 419–427; (g)
Tanaka, C. Q.; Adachi, T.; Hasegawa, Y.; Kawai, T. J. Alloy. Compd. 2009, 488,
538–540; (h) Maneeprakorn, W.; Malik, M. A.; O’Brien, P. J. Mater. Chem. 2010,
20, 2329–2335; (i) Cossairt, B. M.; Owen, J. S. Chem. Mater. 2011, 23, 3114–
3119.
85 oC, 3 h
Se
H
+
Se
+
P
Ph
1,4-dioxane
Se
Me
P
Se
3. (a) Kimura, T.; Murai, T. J. Org. Chem. 2005, 70, 952–959; (b) Kimura, T.; Murai,
T.; Mizuhata, N. Heteroatom. Chem. 2005, 16, 185–191; (c) Moon, J.; Nam, H.;
Kim, S.; Ryu, J.; Han, C.; Lee, C.; Lee, S. Tetrahedron Lett. 2008, 49, 5137–5140;
(d) Song, E.; Jo, Y.; Bae, G.; Oh, I.-K.; Jung, H. M.; Lee, S. Bull. Korean Chem. Soc.
2009, 30, 2129–2131; (e) Artem’ev, A. V.; Chernysheva, N. A.; Gusarova, N. K.;
Malysheva, S. F.; Yas’ko, S. V.; Albanov, A. I.; Trofimov, B. A. Synthesis 2011,
1309–1313.
Ph
10a
Scheme 5. One-pot synthesis of diselenophosphinate 10a from
phosphane selenide, elemental selenium, and styrene.
a secondary
4. For very recent publications on advances on the synthesis of salts of
diselenophosphinic acids, see: (a) Trofimov, B. A.; Artem’ev, A. V.; Malysheva,
S. F.; Gusarova, N. K. J. Organomet. Chem. 2009, 694, 4116–4120; (b) Trofimov, B.
A.; Artem’ev, A. V.; Gusarova, N. K.; Malysheva, S. F.; Fedorov, S. V.; Kazheva, O.
N.; Alexandrov, G. G.; Dyachenko, O. A. Synthesis 2009, 3332–3338; (c)
Artem’ev, A. V.; Malysheva, S. F.; Gusarova, N. K.; Trofimov, B. A. Synthesis
2010, 2463–2467; (d) Artem’ev, A. V.; Malysheva, S. F.; Gusarova, N. K.;
Belogorlova, N. A.; Trofimov, B. A. Synthesis 2010, 1777–1780; (e) Artem’ev, A.
V.; Gusarova, N. K.; Malysheva, S. F.; Trofimov, B. A. Russ. Chem. Bull. 2010, 59,
1671; (f) Artem’ev, A. V.; Gusarova, N. K.; Malysheva, S. F.; Kraikivskii, P. B.;
Belogorlova, N. A.; Trofimov, B. A. Synthesis 2010, 3724–3730; (g) Gusarova, N.
K.; Artem’ev, A. V.; Malysheva, S. F.; Fedorov, S. V.; Kazheva, O. N.; Alexandrov,
G. G.; Dyachenko, O. A.; Trofimov, B. A. Tetrahedron Lett. 2010, 51, 1840–1843.
positive charge, the three-component reaction does not take place
(as was the case with 1-octene).
Besides, the mechanism proposed (Scheme 4) is in agreement
with our finding that bis(2-phenethyl)phosphane selenide reacts
with one equivalent of elemental selenium and one equivalent of
styrene under the same conditions (85 °C, 3 h, 1,4-dioxane) to form
diselenophosphinate 10a in 86% yield12 (Scheme 5).
The synthesis of diselenophosphinic esters reported here is
strictly atom-economic: in most cases, all the starting materials
are consumed to produce the target compounds with no side prod-
ucts being observed.
5. For
a
recent review describing the chemistry and applications of
diselenophosphinates, see Artem’ev, A. V.; Malysheva, S. F.; Gusarova, N. K.;
Trofimov, B. A. Org. Prep. Proc. Int. 2011, 43, 381–449.
6. For the synthesis of heavy metal diselenophosphinate complexes, see: (a)
Müller, A.; Christophliemk, P.; Rao, V. V. K. Chem. Ber. 1971, 104, 1905–1914;
(b) Müller, A.; Rao, V. V. K.; Christophliemk, P. J. Inorg. Nucl. Chem. 1974, 36,
472–475; (c) Nguyen, C. Q.; Adeogun, A.; Afzaal, M.; Malik, M. A.; O’Brien, P.
Chem. Commun. 2006, 2182–2184; (d) Lobana, T. S.; Wang, J.-C.; Liu, C. W.
Coord. Chem. Rev. 2007, 251, 91–110; (e) Artem’ev, A. V.; Malysheva, S. F.;
Gusarova, N. K.; Trofimov, B. A. Russ. J. Gen. Chem. 2011, 81, 1449–1452.
7. (a) Mel’nikov, N. N.; Novozhilov, K. V.; Pylova, T. N. The Pesticide, Chemistry,
Moscow, 1980.; (b) Matolcsy, G.; Nadasy, M.; Andriska, V. Pesticide Chemistry;
Elsevier: Budapest, 1988; (c) Edmundson, R. S. In The Chemistry of
Organophosphorus Compounds; Hartley, F. R., Ed.; Ter- and quinque-valent
phosphorus acids and their derivatives; Wiley: New York, 1996; Vol. 4, pp 397–
494; (d) Haiduc, I. J. Organomet. Chem. 2001, 623, 29–42.
To summarize, a new, efficient, atom-economic, three-compo-
nent reaction between alkenes, secondary phosphanes, and
elemental selenium to give previously unknown diselenophosphi-
nic esters has been discovered and elaborated. The results contrib-
ute to the fundamental chemistry of organic phosphanes, elemental
selenium, and alkenes, as well as to the synthesis of organoseleno-
phosphorus compounds via multi-component reactions. Diseleno-
phosphinic esters represent promising building blocks, potential
precursors of drugs, and active iniferters (RAFT-agents).
8. (a) Selenium in Nutrition: Revised Edition, National Academy Press, Washington,
1983.; (b) Parker, J. N.; Parker, P. M. Selenium: A Medical Dictionary, Bibliography,
and Annotated: Research Guide to Internet References; Icon Group International:
San Diego, 2004; (c) Reilly, C. Selenium in Food and Health; Springer: New York,
2006; (d)Selenium: Its Molecular Biology and Role in Human Health; Hatfield, D.
L., Berry, M. J., Gladyshev, V. N., Eds., 2nd ed.; Springer: New York, 2006.
9. General procedure for the synthesis of diselenophosphinic esters 10a–i: To a
solution of secondary phosphane 1–3 (1.0 mmol) in 1,4-dioxane (8 mL) were
added consecutively alkene 4–9 (1.2 mmol) and powdered grey selenium
(0.158 g, 2.0 mmol) at ambient temperature under argon. The suspension was
stirred until dissolution of the selenium (ca. 3 h) at 85 °C to give a yellowish
transparent solution. The solvent was removed under reduced pressure (1 Torr,
50–60 °C) and the residue purified by flash chromatography (neutral alumina,
hexane) to give diselenophosphinate 10a–c,e–i in 85–95% yield.
Diselenophosphinate 10d was isolated by column chromatography (neutral
alumina, toluene) in 54% yield.
Acknowledgments
This work was supported by the Russian Foundation for Basic
Research (Grant No: 11-03-92003-HHC_a) and the President of
the Russian Federation [programs for the support of leading scien-
tific schools (Grant NSh-3230.2010.3) and young Russian scientists
(Grant MK-629-2010.3)].
Supplementary data
Supplementary data (general remarks, experimental proce-
dures, and characterization data for compounds 10a–i) associated
with this article can be found, in the online version, at
10. Artem’ev, A. V.; Gusarova, N. K.; Malysheva, S. F.; Ushakov, I. A.; Trofimov, B. A.
Tetrahedron Lett. 2010, 51, 2141–2143.
11. For reviews on the availability of secondary phosphines, see: (a) Trofimov, B.
A.; Arbuzova, S. N.; Gusarova, N. K. Russ. Chem. Rev. 1999, 68, 215–228; (b)
Trofimov, B. A.; Gusarova, N. K. Mendeleev Commun. 2009, 19, 295–302.
12. Three-component reaction between bis(2-phenethyl)phosphane selenide,
elemental selenium and styrene: To a solution of bis(2-phenethyl)phosphane
selenide (0.321 g, 1.0 mmol) in 1,4-dioxane (8 mL) were added consecutively
styrene (0.115 g, 1.2 mmol) and powdered grey selenium (0.079 g, 1.0 mmol)
at ambient temperature under argon. The suspension was stirred until
dissolution of the selenium (ca. 3 h) at 85 °C to give a yellowish transparent
solution. The solvent was removed under reduced pressure (1 Torr, 50–60 °C)
and the residue purified by flash chromatography (neutral alumina, hexane) to
give diselenophosphinate 10a in 86% yield.
References and notes
1. For recent examples of the synthesis of salts of diselenophosphinic acids, see:
(a) Davies, R. P.; Martinelli, M. G. Inorg. Chem. 2002, 41, 348–352; (b) Davies, R.
P.; Francis, C. V.; Jurd, A. P. S.; Martinelli, M. G.; White, A. J. P.; Williams, D. J.
Inorg. Chem. 2004, 43, 4802–4804; (c) Hua, G.; Zhang, Q.; Li, Y.; Slawin, A. M. Z.;
Woollins, J. D. Tetrahedron 2009, 65, 6074–6082; (d) Davies, R. P.; Martinelli, M.
G.; Patel, L.; White, A. J. P. Inorg. Chem. 2010, 49, 4626–4631.
2. For the application of heavy metal diselenophosphinates as single-source
precursors of remarkable nanomaterials, see: (a) Nguyen, C. Q.; Afzaal, M.;
Malik, M. A.; Helliwell, M.; Raftery, J.; O’Brien, P. J. Organomet. Chem. 2007, 692,