ORGANIC
LETTERS
2012
Vol. 14, No. 3
950–953
Direct Chemoselective Allylation of Inert
Amide Carbonyls
Yukiko Oda, Takaaki Sato,* and Noritaka Chida*
Department of Applied Chemistry, Faculty of Science and Technology, Keio University,
3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
takaakis@applc.keio.ac.jp; chida@applc.keio.ac.jp
Received January 6, 2012
ABSTRACT
Direct allylation of inert amide carbonyls utilizing the Schwartz reagent afforded either substituted tertiary or secondary amines. A preactivation
step was successfully avoided, which is generally a requisite to increase the electrophilicity of amides. The reaction exhibited remarkable
functional group tolerance and proceeded even in the presence of methyl esters and nitro groups.
Nucleophilic addition to carbonyl groups, such as ke-
tones and esters, is one of the most fundamental transfor-
mations in organic synthesis.1 However, the reaction with
amide carbonyls remains a formidable challenge because
of their high stability caused by the resonance effect of the
nitrogen atom. Assuming a high yielding access to amide
groups,2 direct chemoselective nucleophilic addition to
the amide carbonyls would undoubtedly offer an opportu-
nity for widespread applications in the synthesis of natural
products and pharmaceuticals. However, direct nucleophi-
lic addition to amide carbonyls requires harsh reaction
conditions, which limits the substrate scope. Acyclic amides
are especially challenging substrates because the intermedi-
ates readily undergo hydrolysis.3 Thus, general approaches
for the functionalization of acyclic amides currently rely on
a preactivation step of the inert amide carbonyl (Scheme 1,
1f2∼4) and use of reactive nucleophiles such as DIBAL,
Grignard reagents, and organolithium reagents (2∼4f5).
A preactivation step increases the electrophilicity by redu-
cing the resonance effect of the amide nitrogen via imide 2
(DeNinno4 and Suh5) or thioamide 3 (Murai6). Recently,
Belanger7c,f and Huang7d,e reported a practical one-pot
ꢀ
(4) (a) DeNinno, M. P.; Eller, C. Tetrahedron Lett. 1997, 38, 6545–
6548. (b) DeNinno, M. P.; Eller, C.; Etienne, J. B. J. Org. Chem. 2001, 66,
6988–6993.
(5) (a) Suh, Y.-G.; Shin, D.-Y.; Jung, J.-K.; Kim, S.-H. Chem.
Commun. 2002, 1064–1065. (b) Suh, Y.-G.; Kim, S.-H.; Jung, J.-K.;
Shin, D.-Y. Tetrahedron Lett. 2002, 43, 3165–3167. (c) Jung, J.-W.; Shin,
D.-Y.; Seo, S.-Y.; Kim, S.-H.; Paek, S.-M.; Jung, J.-K.; Suh, Y.-G.
Tetrahedron Lett. 2005, 46, 573–575.
(6) (a) Murai, T.; Mutoh, Y.; Ohta, Y.; Murakami, M. J. Am. Chem.
Soc. 2004, 126, 5968–5969. (b) Murai, T.; Asai, F. J. Am. Chem. Soc.
2007, 129, 780–781. For other selected examples on nucleophilic
additions to acyclic thioamides, see: (c) Tamaru, Y.; Harada, T.; Nishi,
S.; Yoshida, Z. Tetrahedron Lett. 1982, 23, 2383–2386. (d) Ishida, A.;
Nakamura, T.; Irie, K.; Oh-ishi, T. Chem. Pharm. Bull. 1985, 33, 3237–
3249. (e) Tominaga, Y.; Kohra, S.; Hosomi, A. Tetrahedron Lett. 1987,
28, 1529–1532. (f) Tominaga, Y.; Matsuoka, Y.; Hayashida, H.; Kohra,
S.; Hosomi, A. Tetrahedron Lett. 1988, 29, 5771–5774.
(1) For a review on functionalization of carbonyl groups in ketones,
esters, and amides, see: Seebach, D. Angew. Chem., Int. Ed. 2011, 50,
96–101.
(2) For selected recent reviews on amide bond formation, see:
(a) Humphrey, J. M.; Chamberlin, A. R. Chem. Rev. 1997, 97, 2243–
ꢀ
2266. (b) Albericio, F.; Chinchilla, R.; Dodsworth, D. J.; Najera, C. Org.
Prep. Proced. Int. 2001, 33, 203–313. (c) Han, S.-Y.; Kim, Y.-A.
Tetrahedron 2004, 60, 2447–2467. (d) Montalbetti, C. A. G. N.; Falque,
V. Tetrahedron 2005, 61, 10827–10852. (e) Valeur, E.; Bradley, M. Chem.
Soc. Rev. 2009, 38, 606–631.
(7) For selected examples on nucleophilic addition to acyclic amides
via iminium triflates, see: (a) Magnus, P.; Payne, A. H.; Hobson, L.
Tetrahedron Lett. 2000, 41, 2077–2081. (b) Magnus, P.; Gazzard, L.;
Hobson, L.; Payne, A. H.; Rainey, T. J.; Westlund, N.; Lynch, V.
Tetrahedron 2002, 58, 3423–3443. (c) Larouche-Gauthier, R.;
(3) For selected examples on direct conversion of acyclic amides to R,
R-dimethylamines, see: (a) Kuffner, F.; Polke, E. Monatsh 1951, 82
€
330–335. (b) Schiess, M. Diss. ETH Nr. 7935, ETH: Zurich, 1986. (c)
ꢀ
Calderwood, D. J.; Davies, R. V.; Rafferty, P.; Twigger, H. L.; Whelan, H. M.
Tetrahedron Lett. 1997, 38, 1241–1244. (d) Denton, S. M.; Wood, A.
Synlett 1999, 55–56. (e) Tomashenko, O.; Sokolov, V.; Tomashevskiy,
A.; Buchholz, H. A.; Welz-Biermann, U.; Chaplinski, V.; de Meijere, A.
Eur. J. Org. Chem. 2008, 5107–5111.
Belanger, G. Org. Lett. 2008, 10, 4501–4504. (d) Xiao, K.-J.; Luo,
J.-M.; Ye, K.-Y.; Wang, Y.; Huang, P.-Q. Angew. Chem., Int. Ed. 2010,
49, 3037–3040. (e) Xiao, K.-J.; Wang, Y.; Ye, K.-Y.; Huang, P.-Q. Chem.;
ꢀ
Eur. J. 2010, 16, 12792–12796. (f) Belanger, G.; O’Brien, G.; Larouche-
Gauthier, R. Org. Lett. 2011, 13, 4268–4271.
r
10.1021/ol3000316
Published on Web 01/19/2012
2012 American Chemical Society