312
M. Kato et al. / Tetrahedron Letters 53 (2012) 309–312
0.6
0.5
0.4
0.3
0.2
0.1
0
a
N
N
N
N
O
O
13
12
In conclusion, we designed and synthesized zinc porphyrin that
has a couple of metal-ion-responsive units. The formation of [Fe(II)
(bpy)3]-type complexes induced a large conformational change in
alkyl chains. A weak communication between the metal-binding
site and the distant ligand-binding site through bridging alkyl
chains was observed by using the relatively large axial ligand 13.
Finding tight communications in artificial arosteric system with
porphyrins is currently underway.
500
550
600
650
wavelength / nm
Acknowledgments
0.5
0.45
0.4
b
This work was partially supported by Grants (Nos. 23350022
and 22350066) from JSPS.
Supplementary data
Supplementary data associated with this article can be found, in
0.35
0.3
References and notes
1. Nabeshima, T. Bull. Chem. Soc. Jpn. 2010, 83, 969–991.
0.25
0.2
2. Yoon, H. J.; Kuwabara, J.; Kim, J.-H.; Mirkin, C. A. Science 2010, 330, 66–69.
3. (a) Balzani, V.; Venturi, M. Molecular Devices and Machines: A Journey into the
Nanoworld,; Wiely-VCH: Weinheim, Germany, 2003; (b) Takeuchi, M.; Ikeda,
M.; Sugasaki, A.; Shinkai, S. Acc. Chem. Res. 2001, 34, 865–873; (c) Shinkai, S.;
Ikeda, M.; Sugasaki, A.; Takeuchi, M. Acc. Chem. Res. 2001, 34, 494–503.
4. (a) Che, C.-M.; Huang, J.-S. Chem. Commun. 2009, 3996–4015; (b) Collman, J. P.;
Boulatov, R.; Sunderland, C. J.; Fu, L. Chem. Rev. 2004, 104, 561–588; (c) Suslick,
K. In Porphyrin Handbook; Kadaish, K. M., Smith, K. M., Guliard, R., Eds.;
Academic Press, 2000; Vol. 4, pp 41–63.
5. (a) Kozaki, M.; Okada, K. Org. Lett. 2004, 6, 485–488; (b) Kozaki, M.; Akita, K.;
Okada, K. Org. Lett. 2007, 9, 1509–1512; (c) Kozaki, M.; Akita, K.; Suzuki, S.;
Okada, K. Org. Lett. 2007, 9, 3315–3318; (d) Kozaki, M.; Tujimura, H.; Suzuki, S.;
Okada, K. Tetrahedron Lett. 2008, 49, 2931–2934; (e) Kozaki, M.; Akita, K.;
Okada, K.; Islam, D.-M. S.; Ito, O. Bull. Chem. Soc. Jpn. 2010, 83, 1223–1237.
6. Spartan ‘08, Wavefunction, Inc., Irvine, CA.
7. (a) Fletcher, N. C.; Nieuwenhuyzen, M.; Rainey, S. J. Chem. Soc., Dalton Trans.
2001, 2641–2648; (b) Ashton, P. R.; Ballardini, R.; Balzani, V.; Constable, E. C.;
Credi, A.; Kocian, O.; Langford, S. J.; Preece, J. A.; Prodi, L.; Schofield, E. R.;
Spencer, N.; Stoddart, J. F.; Wenger, S. Chem. Eur. J. 1998, 4, 2413–2422.
8. (a) Kozaki, M.; Uetomo, A.; Suzuki, S.; Okada, K. Org. Lett. 2008, 10, 4477–4481;
(b) Uetomo, A.; Kozaki, M.; Suzuki, S.; Yamanaka, K.; Ito, O.; Okada, K. J. Am.
Chem. Soc. 2011, 133, 13276–13279.
9. Grosshenny, V.; Romero, F. M.; Ziessel, R. J. Org. Chem. 1997, 62, 1491–1500.
10. (a) Moore, J. S.; Weinstein, E. J.; Wu, Z. Tetrahedron Lett. 1991, 32, 2465–2466;
(b) Wu, Z.; Moore, J. S. Tetrahedron Lett. 1994, 35, 5539–5542.
0
0.0005 0.001 0.0015 0.002 0.0025 0.003
[13] / [1]
Figure 5. (a) UV–vis spectra resulting form the titration of 1 (2 ꢁ 10ꢂ5 M) with 13
in a toluene–acetonitrile (1:1 v/v) solution. (b) The change in the absorbance of Q-
band at 630 nm as a function of 13:1 concentration. The solid line is a theoretical
binding curve obtained by curve fitting calculations.
(2 ꢁ 10ꢂ5 M) containing 2 equiv of Fe(II) gave the binding constant
K(1ꢀ2Fe)ꢀ13 = (3.1 0.2) ꢁ 104 Mꢂ1 (Fig. S2). These results suggest that
the formation of the [Fe(II)(bpy)3]-type complexes slightly
increases the stability of the coordination of the largest ligand 13
to zinc porphyrin 1. Namely, the structural change at the metal
binding site was successively transferred to the distant ligand
binding site by bridging alkyl chains. Then, the toluene–acetonitrile
(1:1 v/v) solution of 1 (2 ꢁ 10ꢂ5 M) was titrated using the solution
(3.0 ꢁ 10ꢂ2 M) of imidazole or 12. The addition of imidazole or 12
resulted in the red-shift of the porphyrin Q-band of 1 to show the
formation of 1ꢀimidazole or 1ꢀ12, respectively. The Fe(II)-free bind-
ing constants were determined to be K1ꢀimidazole = (1.4 0.1) ꢁ
104 Mꢂ1 and K1ꢀ12 = (3.6 0.3) ꢁ 104 Mꢂ1 from the curve fitting cal-
culations. The similar UV–vis titration using the toluene–acetoni-
trile (1:1 v/v) solution of 1 (2 ꢁ 10ꢂ5 M) containing 2 equiv of
Fe(II) gave the binding constant K(1ꢀ2Fe)ꢀimidazole = (1.5 0.1) ꢁ 104
11. (a) Hyslop, A. G.; Kellett, M. A.; Iovine, P. M.; Therien, M. J. J. Am. Chem. Soc.
1998, 120, 12676–12677; (b) Fendt, L.-A.; Stöhr, M.; Wintjes, N.; Enache, M.;
Jung, T. A.; Diederich, F. Chem. Eur. J. 2009, 15, 11139–11150.
12. Fluorescence spectra of
1
and 1ꢀ2Fe were measured in degassed solvent
(toluene–acetonitrile (1:1 v/v)) (Fig. S8). The excitation of 1 at 575 nm (Q band)
gave characteristic fluorescence spectra for the zinc porphyrin unit
(kEMꢂmax = 617 and 667 nm). The excitation of 1ꢀ2Fe at 575 nm where both
the porphyrin and the [Fe(II)(bpy)3]-unit have absorption (e1ꢀ2Fe:2e9ꢀFe = 1:0.4)
also showed the characteristic fluorescence spectra for zinc porphyrin but with
considerably lower intensity (95% quenching) probably due to the electron
transfer from porphyrin to the [Fe(II)(bpy)3]-unit.
Mꢂ1 and K(1ꢀ2Fe)ꢀ12 = (4.0 0.4) ꢁ 104 Mꢂ1
.
13. (a) Nabeshima, T.; Yoshihira, Y.; Saiki, T.; Akine, S.; Horn, E. J. Am. Chem. Soc.
2003, 125, 28–29; (b) Nabeshima, T.; Tanaka, Y.; Saiki, T.; Akine, S.; Ikeda, C.;
Sato, S. Tetrahedron Lett. 2006, 47, 3541–3544.
14. The negligible decrease in intensity of the MLCT band (500 nm) was observed
by the addition of less than 300 equiv of imidazole to a toluene–acetonitrile
(1:1 v/v) solution of the Fe(II) complex 9ꢀFe. Less than 200 equiv of the ligands
was used for the titration experiments.
15. Sanders, J. K. M.; Bampos, N.; C-Watson, Z.; Darling, S. L.; Hawley, J. C.; Kim, H.-
J.; Mak, C. C.; Webb, S. J. In Porphyrin Handbook; Kadaish, K. M., Smith, K. M.,
Guliard, R., Eds.; Academic Press, 2000; Vol. 3, pp 1–48.
These results suggest that the formation of the [Fe(II)(bpy)3]-
type complexes shows negligible effect on the axial complexation
for imidazole and ligand 12: the binding constants are almost iden-
tical for these complexes within experimental errors. However,
there is small but clear difference on the binding constants, K1ꢀ13
[(2.5 0.2) ꢁ 104 Mꢂ1] and K(1ꢀ2Fe)ꢀ13 [(3.1 0.2) ꢁ 104 Mꢂ1], sug-
gesting a small positive arosteric effect on the axial ligand binding
by the [Fe(II)(bpy)3]-type coordination.