126
C. Görl et al. / Journal of Molecular Catalysis A: Chemical 352 (2012) 110–127
be explained with the quite low activity of the catalyst which is
complex 28 protects the iron centers moderately from deactiva-
tion by ligand transfer reactions leading to a good activity of 20400
[kg prod./mol Fe h].
complex type, the meta-functionalized 2,6-bis(arylimino)pyridine
iron(III) complexes are rare examples which are able to copoly-
merize ethylene with higher ␣-olefins and to isomerize terminal
into internal olefins.
Acknowledgements
Scheme 17 shows the GC spectrum of the oligomer mixture
produced with 25/MAO with special attention to the C6 region.
For 25/MAO, the internal isomers cis-2-hexene (tret = 6.75 min)
and trans-2-hexene (tret ∼ 6.60 min) as well as the branched
pentene (tret ∼ 6.60 min) were observed. Due to the increased steric
bulk of the bromo substituents compared to fluoro or chloro
atoms, the content of the “cooligomerization” product 2-ethyl-1-
butene significantly decreased (peak around tret ∼ 6.58 missing, see
Scheme 9 for comparison) indicating that the 1,2-insertion of 1-
butene into the growing chain is hindered (for the subsequent
ethyl group). trans-4-Methyl-1-pentene, 2-methyl-1-pentene, and
2,3-dimethylbutene were also not found in the mixture produced
with 25/MAO.
halogen substituted complexes and complex 17 with unsubstituted
iminophenyl rings exhibited the greatest tendencies towards iso-
merization reactions, and remarkably low contents of 1-hexene
were found in the C6 fractions of the product mixtures (always
lower than 50%, see Table 5). Compared with the para-halogen
substituted catalysts, the complexes 18–21 afforded increased
amounts of 1-hexene (52–81%) in the C6 fractions (see Table 5).
1-hexene content could be noted (except for the bromo substituted
derivative 25). In analogy to the first publications of Brookhart and
Gibson [1–7], the ortho-substituted compounds showed the highest
selectivities towards ␣-olefins (except the 2-fluoro derivative). For
comparison, Scheme 18 shows the enlarged C6 fractions in the GC
spectra obtained for the meta-monosubstituted catalysts (18–22;
left) and corresponding meta-disubstituted catalysts (23–26 and
28; right) indicating the increased selectivities towards 1-hexene
of the latter ones.
We thank Saudi Basic Industries Corporation (SABIC), Saudi Ara-
bia, for the financial support and Christopher Synatschke (MC II,
University of Bayreuth) for recording the MALDI-TOF MS spectra.
References
[1] G.J.P. Britovsek, V.C. Gibson, B.S. Kimberley, P.J. Maddox, S.J. McTavish, G.A.
Solan, A.J.P. White, D.J. Williams, Chem. Commun. (1998) 849.
[2] G.J.P. Britovsek, V.C. Gibson, B.S. Kimberley, P.J. Maddox, S.J. McTavish, G.A.
Solan, A.J.P. White, D.J. Williams, J. Am. Chem. Soc. 121 (1999) 8728.
[3] G.J.P. Britovsek, V.C. Gibson, D.F. Wass, Angew. Chem. Int. Ed. 37 (1999) 428.
[4] G.J.P. Britovsek, G.K.B. Clentsmith, V.C. Gibson, D.M.L. Goodgame, S.J. McTavish,
Q.A. Pankhurst, Catal. Commun. 3 (2002) 207.
[5] B.L. Small, M. Brookhart, J. Am. Chem. Soc. 120 (1998) 7143.
[6] B.L. Small, M. Brookhart, A.M.A. Bennett, J. Am. Chem. Soc. 120 (1998) 4049.
[7] B.L. Small, M. Brookhart, Macromolecules 12 (1999) 2120.
[8] Y. Chen, C. Qian, J. Sun, Organometallics 22 (2003) 1231.
[9] Y. Chen, R. Chen, C. Qian, X. Dong, J. Sun, Organometallics 22 (2003) 4312.
[10] Z. Zhang, S. Chen, X. Zhang, H. Li, Y. Ke, Y. Lu, Y. Hu, J. Mol. Catal. A: Chem. 230
[11] F. Pelascini, F. Peruch, P.J. Lutz, M. Wesolek, J. Kress, Eur. Polym. Sci. 41 (2005)
1288.
[12] K. Lappalainen, K. Yliheikkilä, A.S. Abu-Surrah, M. Polamo, M. Leskelä, T. Repo,
Z. Anorg, Allg. Chem. 631 (2005) 763.
[13] A.S. Ionkin, W.J. Marshall, D.J. Adelman, A.L. Shoe, R.E. Spence, T. Xie, J. Polym.
Sci. A: Polym. Chem. 44 (2006) 2615.
[14] A.S. Ionkin, W.J. Marshall, D.J. Adelman, B. Bobik Fones, B.M. Fish, M.F.
Schiffhauer, Organometallics 25 (2006) 2978.
[15] V.C. Gibson, N.J. Long, P.J. Oxford, A.J.P. White, D.J. Williams, Organometallics
25 (2006) 1932.
[16] Y.V. Kissin, C. Qian, G. Xie, Y. Chen, J. Polym. Sci. A: Chem. 44 (2006) 6159.
[17] F.A.R. Kaul, G.T. Puchta, G.D. Frey, E. Herdtweck, W.A. Herrmann,
Organometallics 26 (2007) 988.
[18] D. Takeuchi, R. Matsuura, Y. Fukuda, K. Osakada, Dalton Trans. 41 (2009) 8955.
[19] A.S. Ionkin, W.J. Marshall, D.J. Adelman, B. Bobik Fones, B.M. Fish, M.F.
Schiffhauer, R.E. Spence, T. Xie, Organometallics 27 (2008) 1147.
[20] D. Takeuchi, R. Matsuura, S. Park, K. Osakada, J. Am. Chem. Soc. 129 (2007) 7002.
[21] K.P. Tellmann, V.C. Gibson, A.J.P. White, D.J. Williams, Organometallics 24
(2005) 280.
[22] M. Seitz, H.G. Alt, A. Aburaqabah, S.J. Palackal, EP 1716924 (2006).
[23] R. Schmidt, B.M. Welch, R.D. Knudsen, S. Gottfried, H.G. Alt, J. Mol. Catal. A:
Chem. 222 (2004) 17–25.
[24] M. Lopez Reyes, C. Martin Marcos, O. Prieto Acedo, J. Sancho Royo, J. Campora
Perez, P. Palma Ramirez, A.M. Naz Lucena, C.M. Perez Rodriguez, EP 2003166
(2008).
[25] A. Rodriguez-Delgado, J. Campora, A.M. Naz, P. Palma, M.L. Reyes, Chem. Com-
mun. (2008) 5230.
In conclusion, iron(III) complexes with meta-substituted
iminophenyl rings proved to be highly active catalysts for
ethylene oligomerization reactions leading to product mixtures
with narrow molecular weight distributions and displayed the abil-
ity to isomerize and copolymerize small olefins like 1-butene.
[26] R. Schmidt, U. Hammon, M.B. Welch, H.G. Alt, B.E. Hauger, R.D. Knudsen, US
6458905 (2002).
[27] I.S. Paulino, U. Schuchardt, J. Mol. Catal. A: Chem. 211 (2004) 55.
[28] Z. Zhang, J. Zou, N. Cui, Y. Ke, Y. Hu, J. Mol. Catal. A: Chem. 219 (2004) 249.
[29] C. Goerl, H.G. Alt, J. Organomet. Chem. 692 (2007) 4580.
[30] A.S. Ionkin, W.J. Marshall, D.J. Adelman, B. Bobik Fones, B.M. Fish, M.F.
Schiffhauer, P.D. Soper, R.L. Waterland, R.E. Spence, T. Xie, J. Polym. Sci. A:
Polym. Chem. 46 (2008) 585.
[31] C. Goerl, H.G. Alt, J. Mol. Catal. A: Chem. 273 (2007) 118.
[32] A.S. Ionkin, WO 2007059015 (2007).
[33] D.D. Devore, S.S. Feng, K.A. Frazier, J.T. Patton, WO 2000069923 (2000).
[34] K.P. Bryliakov, N.V. Semikolenova, V.N. Zudin, V.A. Zakharov, E.P. Talsi, Catal.
Commun. 5 (2004) 45.
[35] F. Prades, R. Spitz, C. Boisson, S. Sirol, A. Razavi, WO 2007014889 (2007).
[36] D. Gong, B. Wang, C. Bai, J. Bi, F. Wang, W. Dong, X. Zhang, L. Jiang, Polymer 50
(2009) 6259.
[37] P. Hao, Y. Chen, T. Xiao, W.-H. Sun, J. Organomet. Chem. 695 (2010) 90.
[38] C. Goerl, T. Englmann, H.G. Alt, J. Appl. Catal. A: Gen. 403 (2011) 25.
[39] E.P. Talsi, D.E. Babushkin, N.V. Semikolenova, V.N. Zudin, V.N. Panchenko, V.A.
Zakharov, Macromol. Chem. Phys. 202 (2001) 2046.
[40] J. Martinez, V. Cruz, J. Ramos, S. Gutierrez-Oliva, J. Martinez-Salazar, A. Toro-
Labbe, J. Phys. Chem. C 112 (2008) 5023.
[41] V. Cruz, J. Ramos, J. Martinez-Salazar, S. Gutierrez-Oliva, A. Toro-Labbe,
Organometallics 28 (2009) 5889.
4. Conclusion
Iron(III)
complexes
containing
meta-substituted
2,6-
bis(arylimino)pyridine ligand frameworks were synthesized and
characterized. After activation with methylaluminoxane (MAO),
the resulting catalysts proved to be highly active in ethylene
oligomerization reactions. Both the size and the electronegativity
of the substituents strongly influence the product compositions.
Although the iminophenyl rings of the ligand frameworks do
not contain substituents in ortho-positions to the former amino
groups, good catalytic activities were observed. Besides ␣-olefins,
also internal and branched olefins were detected by GC analyses.
Explanations for this unusual behavior consider the coordination
and insertion of small ␣-olefins like 1-butene into the growing
chains and intermediate C–C bond cleavage reactions. Some of the
resulting methylpentenes require the presence of C3 units in the
reaction mixtures which are supposed to form upon coordination
of internal C6 olefins over metallacyclic intermediates. Among this
[42] R. Raucoules, T. de Bruin, P. Raybaud, C. Adamo, Organometallics 27 (2008)
3368.
[43] I.E. Soshnikov, N.V. Semikolenova, A.N. Bushmelev, K.P. Bryliakov, O.Y. Lyakin,
C. Redshaw, V.A. Zakharov, E. Talsi, Organometallics 28 (2009) 6003.