ORGANIC
LETTERS
2012
Vol. 14, No. 1
206–209
Copper-Catalyzed Skeletal
Rearrangement of O-Propargylic
Alkylaldoximes via NꢀO Bond Cleavage
Itaru Nakamura,*,†,‡ Tomoki Iwata,‡ Dong Zhang,‡ and Masahiro Terada†,‡
Research and Analytical Center for Giant Molecules, Graduate School of Science,
Tohoku University, Sendai 980-8578, Japan, and Department of Chemistry,
Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
Received November 7, 2011
ABSTRACT
O-Propargylic oximes that possess a proton at the R-position of the oxime group were effectively converted to the corresponding oxiranyl
N-alkenylimines via a 5-endo-dig cyclization followed by the cleavage of the NꢀO bond.
Metal-catalyzed skeletal rearrangements have been em-
ployed in numerous elegant transformations in the con-
struction of complex molecules, often via unique reaction
mechanisms.1 Reaction pathways of such catalytic skeletal
rearrangements can be dramatically affected by substitu-
tion effects, as shown by previous investigations involving
enynes and propargylic esters as substrates.2 Recently,
we have demonstrated that O-propargylic oximes can
undergo unique skeletal rearrangements in the presence
of copper catalysts.3 As shown in Scheme 1 (path a), the
key step of these transformations is the catalytic [2,3]-
migration of the propargylic oxime to the N-allenyl nitrone
via cyclic intermediate A involving a CꢀO bond cleavage.
As expected, the CꢀO bond cleavage process is facilitated
by the elimination of a stable nitrone group as the leaving
group. In contrast, the elimination of a proton from the
R-position of the oxime group of cyclic intermediate A, as
shown inScheme1 (pathb), would obstruct the CꢀO bond
† Research and Analytical Center for Giant Molecules.
‡ Department of Chemistry.
(1) For pioneering works, see: (a) Trost, B. M.; Tanoury, G. J. J. Am.
Chem. Soc. 1988, 110, 1636–1638. (b) Trost, B. M.; Trost, M. K. J. Am.
Chem. Soc. 1991, 113, 1850–1852.
(2) For selected reviews, see: (a) Aubert, C.; Buisine, O.; Malacria, M.
Chem. Rev. 2002, 102, 813–834. (b) Diver, S. T.; Giessert, A. J. Chem.
~
ꢀ
Rev. 2004, 104, 1317–1382. (c) Anorbe, L.; Domınguez, G.; Perez-Castells,
J. Chem.;Eur. J. 2004, 10, 4938–4943. (d) Bruneau, C. Angew. Chem., Int.
Ed. 2005, 44, 2328–2334. (e) Zhang, L.; Sun, J.; Kozmin, S. A. Adv. Synth.
Catal. 2006, 348, 2271–2296. (f) Marion, N.; Nolan, S. P. Angew. Chem.,
(4) Yeom, H.-S.; Lee, E.-S.; Shin, S. Synlett 2007, 2292–2294.
(5) (a) Yeom, H.-S.; Lee, J.-E.; Shin, S. Angew. Chem., Int. Ed. 2008,
47, 7040–7043. (b) Cui, L.; Zhang, G.; Peng, Y.; Zhang, L. Org. Lett.
2009, 11, 1225–1228. (c) Hwang, S.; Lee, Y.; Lee, P. H.; Shin, S.
Tetrahedron Lett. 2009, 50, 2305–2308. (d) Yeom, H.-S.; Lee, Y.; Lee,
J.-E.; Shin, S. Org. Biomol. Chem. 2009, 7, 4744–4752. (e) Jadhav, A. M.;
Bhunia, S.; Liao, H.-Y.; Liu, R.-S. J. Am. Chem. Soc. 2011, 133, 1769–
1771. (f) Xiao, J.; Li, X. Angew. Chem., Int. Ed. 2011, 50, 7226–7236.
(6) π-Acidic metal-catalyzed reactions via NꢀO bond cleavage:
(a) Trost, B. M.; Rhee, Y. H. J. Am. Chem. Soc. 2002, 124, 2528–2533.
(b) Gao, H.; Zhang, J. Adv. Synth. Catal. 2009, 351, 85–88. (c) Cui,
L.; Peng, Y.; Zhang, L. J. Am. Chem. Soc. 2009, 131, 8394–8395.
(d) Nakamura, I.; Sato, Y.; Terada, M. J. Am. Chem. Soc. 2009, 131,
4198–4199. (e) Ye, L.; Cui, L.; Zhang, G.; Zhang, L. J. Am. Chem. Soc.
2010, 132, 3258–3259. (f) Yeom, H.-S.; Lee, Y.; Jeong, J.; So, E.; Hwang,
S.; Lee, J.-E.; Lee, S. S.; Shin, S. Angew. Chem., Int. Ed. 2010, 49,
1611–1614. (g) Lu, B.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2010, 132,
14070–14072. (h) Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2011, 13,
2395–2397.
^
Int. Ed. 2007, 46, 2750–2752. (g) Michelet, V.; Toullec, P. Y.; Genet, J.-P.
ꢀ
ꢀ~
Angew. Chem., Int. Ed. 2008, 47, 4268–4315. (h) Jimenez-Nunez, E.;
Echavarren, A. M. Chem. Rev. 2008, 108, 3326–3350. (i) Tobisu,
M.; Chatani, N. Chem. Soc. Rev. 2008, 37, 300–307. (j) Correa, A.; Marion,
N.; Fensterbank, L.; Malacria, M.; Nolan, S. P.; Cavallo, L. Angew.
€
Chem., Int. Ed. 2008, 47, 718–721. (k) Furstner, A. Chem. Soc. Rev.
2009, 38, 3208–3221.
(3) (a) Nakamura, I.; Araki, T.; Terada, M. J. Am. Chem. Soc. 2009,
131, 2804ꢀ2805 (withdrawn). (b) Nakamura, I.; Araki, T.; Terada, M.
J. Am. Chem. Soc. 2011, 133, 6861. (c) Nakamura, I.; Araki, T.; Zhang,
D.; Kudo, Y.; Kwon, E.; Terada, M. Org. Lett. 2011, 13, 3616–3619.
(d) Nakamura, I.; Zhang, D.; Terada, M. J. Am. Chem. Soc. 2010,
132, 7884–7886. (e) Nakamura, I.; Zhang, D.; Terada, M. J. Am.
Chem. Soc. 2011, 133, 6862. (f) Nakamura, I.; Okamoto, M.; Terada,
M. Org. Lett. 2010, 12, 2453–2455. (g) Nakamura, I.; Zhang, D.;
Terada, M. Tetrahedron Lett. 2011, 52, 6470–6472.
r
10.1021/ol203001w
Published on Web 12/14/2011
2011 American Chemical Society