enabled us to introduce various functional groups in high
yields.6,7 However, several active metal catalysts are
expensive or not commercially available.
meso-aminoporphyrins is quite cumbersome as described
above. Furthermore, it is quite troublesome to synthesize
meso-diazidoporphyrin by the reported procedure be-
cause of the highly air-sensitive nature of the precursors,
i.e., meso-diaminoporphyrins.13 Therefore, there is still
plenty of room for improvement in the synthetic route to
develop the chemistry of azidoporphyrins. Aromatic
nucleophilic substitution (SNAr) reactions of aryl halides
with an azide anion are facile and efficient procedures to
synthesize aromatic azides, especially in the case of
electron-deficient aromatics.10 However, the SNAr reac-
tions of haloporphyrins have not been energetically in-
vestigated as a method for peripheral functionalization of
the porphyrins.1,14 More recently, Balaban et al. reported
the practical SNAr reactions of meso-bromoporphyrins
with alkylamines.14e,f Herein, we have found that meso-
mono- or dibromodiarylporphyrins undergo the SNAr-
type reaction with an azide anion under mild conditions
without any additive to give the corresponding azidopor-
phyrins in high yields. In addition, we have revealed the
first molecular and crystal structures of mono- and
diazidoporphyrins, which are, to the best of our knowl-
edge, one of the largest aromatic azides confirmed by
X-ray analysis.15
meso-Nitrogen-substituted porphyrins are relatively
well-investigated heteroatom-substituted porphyrins be-
cause the introduced substituents strongly affect a π-electron
system of the porphyrin. There have been two typical
synthetic routes to meso-nitrogen-substituted porphyrins.
One is a transformation of an amino group (ꢀNH2),8 which
is introduced by a nitration and a subsequent reduction of
the introduced nitro group.9 The other is a transition-metal-
catalyzed CꢀN(amine or amide) bond formation from
meso-haloporphyrins described above.6
Azido groups also play important roles in synthetic
chemistry due to their versatile conversion to other func-
tional groups such as amine (by reduction), 1,2,3-triazole
(by cycloaddition with alkyne), and highly reactive nitrene
(by thermal decomposition or photodecomposition).10 De-
spite the synthetic usefulness of the azide groups, there have
been few reports directly concerning azido-substituted
porphyrins.11,12 In a previous report, meso-azidoporphyrin
(Ni complex) was synthesized by treatment of sodium
azide with a diazonium salt prepared from meso-amino-
porphyrin (85% yield).11b However, the synthesis of the
First, we investigated a reaction of a Ni(II) complex of
meso-bromodiarylporphyrin 1a(Ni) with sodium azide.
Typically, 1a(Ni) was treated with 10 equiv of sodium
azide in DMF under a N2 atmosphere with protection
from light. When the reaction was performed at 40 °C for
7 h, the desired meso-azidoporphyrin 2a(Ni) was obtained
in 93% yield (Table 1, entry 1). The reaction time was re-
duced by elevating the reaction temperature to 60 °C
(entry 2), although a longer reaction time led to the
thermal decomposition of 2a(Ni) into meso-aminopor-
phyrin 3a(Ni) and undefined brown byproducts (entry 3).
At 90 °C, 2a(Ni) was completely decomposed with the
formation of 3a(Ni) in 25% yield (entry 4). When the
amount of sodium azide was reduced to 5 equiv (entry 5),
a longer reaction time was required to complete the reac-
tion. Therefore, the yield of 2a(Ni) was reduced compared
to entry 3 (the same condition except for the amount of
sodium azide). The reaction proceeded smoothly in DMF
while no reaction proceeded in THF (entry 6). Reaction
of meso-bromodiphenylporphyrin 1b(Ni) also gave azi-
doporphyrin 2b(Ni) in 68% yield (entry 7). Because of the
poor solubility of 1b(Ni) in DMF, a longer reaction time
was required.
(7) For recent examples of transition-metal-catalyzed other Cꢀ
heteroatom or CꢀC bond formations of meso-haloporphyrins, see: (a)
Hyslop, A. G.; Kellett, M. A.; Iovine, P. M.; Therien, M. J. J. Am. Chem.
Soc. 1998, 120, 12676–12677. (b) Gao, G.-Y.; Colvin, A. J.; Chen, Y.;
Zhang, X. P. Org. Lett. 2003, 5, 3261–3264. (c) Gao, G.-Y.; Colvin, A. J.;
Chen, Y.; Zhang, X. P. J. Org. Chem. 2004, 69, 8886–8892. (d)
Takanami, T.; Hayashi, M.; Chijimatsu, H.; Inoue, W.; Suda, K. Org.
Lett. 2005, 7, 3937–3940. (e) Atefi, F.; McMurtrie, J. C.; Turner, P.;
Duriska, M.; Arnold, D. P. Inorg. Chem. 2006, 25, 6479–6489. (f)
Matano, Y.; Shinokura, T.; Matsumoto, K.; Imahori, H.; Nakano, H.
Chem.;Asian J. 2007, 2, 1417–1429. (g) Gao, G. Y.; Ruppel, J. V.;
Fields, K. B.; Xu, X.; Chen, Y.; Zhang, X. P. J. Org. Chem. 2008, 73,
4855–4858. (h) Matano, Y.; Matsumoto, K.; Nakao, Y.; Uno, H.;
Sakaki, S.; Imahori, H. J. Am. Chem. Soc. 2008, 130, 4588–4589. (i)
Enakieva, Y. Y.; Bessmertnykh, A. G.; Gorbunova, Y. G.; Stern, C.;
Rousselin, Y.; Tsivadze, A. Y.; Guilard, R. Org. Lett. 2009, 11, 3842–
3845.
(8) (a) Screen, T. E. O.; Blake, I. M.; Rees, L. H.; Clegg, W.; Borwick,
S. J.; Anderson, H. L. J. Chem. Soc., Perkin Trans. 1 2002, 320–329. (b)
Redmore, N. P.; Rubtsov, I. V.; Therien, M. J. Inorg. Chem. 2002, 41,
566–570. (c) Yoshida, N.; Ishizuka, T.; Yofu, K.; Murakami, M.;
Miyasaka, H.; Okada, T.; Nagata, Y.; Itaya, A.; Cho, H. S.; Kim, D.;
Osuka, A. Chem.;Eur. J. 2003, 9, 2854–2866. (d) Kamada, T.; Aratani,
N.; Ikeda, T.; Shibata, N.; Higuchi, Y.; Wakamiya, A.; Yamaguchi, S.;
Kim, K. S.; Yoon, Z. S.; Kim, D.; Osuka, A. J. Am. Chem. Soc. 2006,
128, 7670–7678. (e) Esdaile, L. J.; Jensen, P.; McMurtrie, J. C.; Arnold,
D. P. Angew. Chem., Int. Ed. 2007, 46, 2090–2093. (f) Shen, D.-M.; Liu,
C.; Chen, X.-G.; Chen, Q.-Y. Synlett 2009, 6, 945–948. (g) Wallin, S.;
Monnereau, C.; Blart, E.; Gankou, J.-R.; Odobel, F.; Hammarstrom, L.
J. Phys. Chem. A 2010, 114, 1709–1721.
(9) Arnold, D. P.; Bott, R. C.; Eldridge, H.; Elms, F.; Smith, G.;
Zojaji, M. Aust. J. Chem. 1997, 50, 495–503.
€
(10) (a) Brase, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew.
Chem., Int. Ed. 2005, 44, 5188–5240. (b) Chapyshev, S. V. Synlett 2009,
1–8. (c) Minozzi, M.; Nanni, D.; Spagnolo, P. Chem.;Eur. J 2009, 15,
7830–7840. (d) Organic Azides: Syntheses and Applications; Brase, S.,
(13) To the best of our knowledge, meso-diaminodiarylporphyrins
and their metal complexes have not been reported.
€
Banert, K., Eds.; John Wiley & Sons: Chichester, 2010.
(11) For meso-azidoporphyrins, see: (a) Smith, K. M.; Barnett, G. H.;
(14) (a) Baldwin, J. E.; Crossley, M. J.; DeBernardis, J. Tetrahedron
1982, 38, 685. (b) Gong, L. C.; Dolphin, D. Can. J. Chem. 1985, 63, 3793–
3799. (c) Crossley, M. J.; King, L. G.; Simpson, J. L. J. Chem. Soc.,
Perkin Trans. 1 1997, 3087–3096. (d) Crossley, M. J.; King, L. G.; Pyke,
S. M.; Tansey, C. W. J. Porphyrins Phthalocyanines 2002, 6, 685–694. (e)
Balaban, M. C.; Chappaz-Gillot, C.; Canard, G.; Fuhr, O.; Roussel, C.;
Balaban, T. S. Tetrahedron 2009, 65, 3733–6522. (f) Balaban, M. C.;
Evans, B.; Martynenko, Z. J. Am. Chem. Soc. 1979, 101, 5953–5961. (b)
ꢀ
Severac, M.; Pleux, L. L.; Scarpaci, A.; Blart, E.; Odobel, F. Tetrahedron
Lett. 2007, 48, 6518–6522.
(12) For β-azidoporphyrins, see: (a) Shen, D.-M.; Liu, C.; Chen
Q.-Y. Eur. J. Org. Chem. 2007, 1419–1422. (b) Liu, H.; Duclairoir, F.;
Fleury, B.; Dubois, L.; Chenavier, Y.; Marchon, J. C. Dalton Trans.
€
Eichhofer, A.; Buth, G.; Hauschild, R.; Szmytkowski, J.; Kalt, H.;
Balaban, T. S. J. Phys. Chem. B 2008, 112, 5512–5521.
(15) Cambridge Structural Database (CSD), version 5.3.2 (updated
May, 2011).
ꢀ
2009, 3793–3799. (c) Lacerda, P. S. S.; Silva, A. M. G.; Tome, A. C.;
Neves, M. G. P. M. S.; Silva, A. M. S.; Cavaleiro, J. A. S.; Llamas-Saiz,
A. L. Angew. Chem., Int. Ed. 2006, 45, 5487–5491.
Org. Lett., Vol. 14, No. 1, 2012
191