Organometallics
Article
ipso-Ph), 131.5 (d, 2C, 2JP−C = 25 Hz, OPCCH), 131.1 (s, 3C, TtPh
2C, TtPh o-Ph), 128.5 (s, 2C, 1JPt−C = 951 Hz, Pt-Ar ipso-Ph), 127.3 (s,
2
2
p-Ph), 131.0 (d, 1C, JP−C = 24 Hz, OPCCH), 130.3, 130.2 (s, 2C,
4C, JPt−C = 56 Hz, Pt-Ar o-Ph), 125.2 (s, 2C, Pt-Ar p-Ph), 121.8,
4C, TtPh o-Ph), 127.9 (s, 2C, JPt−C = 944 Hz, Pt-Ar ipso-Ph), 127.2
121.7 (s, 2C, 4C, TtPh m-Ph), 115.4 (s, 1C, JPt−C = 49 Hz, Pt-
1
3
2
1
(s, 4C, JPt−C = 56 Hz, Pt-Ar o-Ph), 125.0 (s, 2C, Pt-Ar p-Ph), 122.0,
CH2CHCH2), 27.3 (s, 1C, JPt−C = 643 Hz, Pt-CH2CHCH2).
1
121.8 (s, 4C, 2C, TtPh m-Ph), 7.3 (s, 1C, JPt−C = 689 Hz, Pt-CH3).
HRMS (ESI) m/z Calcd: 869.2194 (M+). Found: 869.2152.
[(κ3-TtCy)Pt(Ph)2(CH2CHCH2)][BF4] (4c-L2). The procedure in
general method B was followed using allyl iodide as the electrophile.
1H NMR (CD2Cl2, 294 K, δ): 8.87, 9.30 (s, 2H, 1H, TtCyCH),
7.07−6.97 (m, 10H, Pt-C5H6), 5.80 (m, 1H, Pt-CH2CH⟩CH2), 5.10
Anal. Calcd for C38H31F3N9O4PPtS: C, 45.97; H, 3.15; N, 12.70.
Found: C, 45.72; H, 3.26; N, 12.48.
[(κ3-TtCy)Pt(Ph)2Me][X] (4a-L2). The procedure in general
method A was followed using methyl iodide or methyl triflate as the
electrophile. NMR data for the OTf counterion complex are reported.
1H NMR (CD2Cl2, 300 K, δ): 9.01, 9.00 (s, 2H, 1H, ThCyCH), 7.04
(d, 4H, 3JPt−H = 30 Hz, Ho), 7.02−6.93 (m, 6H, Hm and Hp), 4.65 (m,
3
4
(d, 1H, JH−H = 17 Hz, JPt−H = 19 Hz, Pt-CH2CH⟩CHtrans to H), 4.80
3
(d, 1H, JH−H = 9 Hz, Pt-CH2CH⟩CHs to H), 4.66, 4.59 (m, 2H, 1H,
CA-H), 3.71 (d, 2H, 2JPt−H = 87 Hz, Pt-CH2CH⟩CH2), 2.02−1.71 (m,
3H, NCH(Cy)), 2.20−1.27 (m, 30H, cyclohexyl), 2.07 (s, 3H, 2JPt−H
=
30H, cyclohexyl). 31P{1H} NMR (CD2Cl2, 294 K, δ): −6.3 (s, 1P,
74 Hz, Pt-CH3). 31P{1H} NMR (CD2Cl2, 300 K, δ): −8.3 (s, 1P,
TtPhPO). 13C{1H} NMR (CD2Cl2, 270 K, δ): 141.2 (s, 1C, 2JPt−C
=
TtCyPO). 13C{1H} NMR (CD2Cl2, 292 K, δ): 136.4 (s, 4C, 3JPt−C
=
64 Hz, Pt-CH2CHCH2), 136.0 (s, 4C, Pt-Ar m-Ph), 135.1 (d, 2C,
13 Hz, Pt-Ar m-Ph), 136.1 (d, 2C, OPC, 1JP−C = 150 Hz), 135.5 (d,
1
1
OPC, JP−C = 151 Hz), 134.8 (d, 1C, OPC, JP−C = 152 Hz),
1
2
2
1C, OPC, JP−C = 151 Hz), 130.9 (d, 3C, OPCCH, JP−C
=
130.5 (d, 2C, OPCCH, JP−C = 23 Hz), 130.3 (d, 1C, OPCCH,
1
2JP−C = 21 Hz), 128.3 (s, 2C, 1JPt−C = 944 Hz, Pt-Ar ipso-Ph), 127.3 (s,
23 Hz), 128.3 (s, 2C, JPt−C = 941 Hz, Pt-Ar ipso-Ph), 127.2 (s, 4C,
2JPt−C = 56 Hz, Pt-Ar o-Ph), 125.0 (s, 2C, Pt-Ar p-Ph), 63.6, 63.5 (s,
2C, 1C, NCH(cyclohexyl)), 33.3−33.0 (s, 1:1:1, 6C, CB), 25.1−25.0
2
4C, JPt−C = 55 Hz, Pt-Ar o-Ph), 125.2 (s, 2C, Pt-Ar p-Ph), 112.4 (s,
3
1C, JPt−C = 49 Hz, Pt-CH2CHCH2), 63.4, 63.3 (s, 2C, 1C, CA),
1
1
(s, 1:1:1 and 2:1, 9C, CC and CD), 6.5 (s, 1C, JPt−C = 689 Hz, Pt-
33.3−33.2 (s, 1:1:1, 6C, CB), 26.0 (s, 1C, JPt−C = 644 Hz, Pt-CH2C
CH3). HRMS (ESI) m/z Calcd: 861.3446 (M+). Found: 861.3465.
[(κ3-TtPh)Pt(Ph)2Et][X] (4b-L1). The procedure in general method A
was followed using ethyl iodide or ethyl triflate as the electrophile.
HCH2), 25.1−24.9 (s, 1:1:1 and 2:1, 9C, CC and CD). HRMS (ESI)
m/z Calcd: 887.3602 (M+). Found: 887.3564.
[(κ3-TtPh)Pt(Ph)2(CH2Ph)][BF4] (4d-L1). The procedure in general
1
1
NMR data for the OTf counterion complex are reported. H NMR
method B was followed using benzyl iodide as the electrophile. H
(CD2Cl2, 300 K, δ): 9.37, 9.25 (s, 2H, 1H, TtPhCH), 7.84−7.60
(m, 15H, TtPhC6H5), 7.20 (d, 4H, 3JPt−H = 51 Hz, Pt-Ar Ho), 7.07, 6.99
(m, 6H, Pt-Ar Hm and Hp), 3.17 (q, 2H, 2JPt−H = 70 Hz, Pt-CH2-CH3),
0.86 (t, 3H,3JPt−H = 54 Hz, Pt-CH2-CH3). 31P{1H} NMR (CD2Cl2,
295 K, δ): −10.5 (s, 1P, TtPhPO). 13C{1H} NMR (CD2Cl2, 293 K,
NMR (CD2Cl2, 296 K, δ): 9.35, 9.32 (s, 2H, 1H, TtPhCH), 7.72−7.51,
(m, 15H, TtPhC6H5), 7.28−7.03 (m, 10H, Pt-Ar), 6.83−6.72 (m, 5H,
Pt-CH2-C6H5), 4.51 (s, 2H, JPt−H = 88 Hz, Pt-CH2-C6H5). 31P{1H}
2
NMR (CD2Cl2, 296 K, δ): −7.06 (s, 1P, TtPhPO). 13C {1H} NMR
2
(CD2Cl2, 296 K, δ): 143.6 (s, 1C, JPt−C = 52 Hz, Pt-Bn ipso-Ph),
1
136.9 (d, 1C, OPC, 1JP−C = 151 Hz), 136.6 (d, 2C, OPC, 1JP−C
=
δ): 137.1 (d, 2C, OPC, JP−C = 149 Hz), 136.9 (d, 1C, OPC,
1JP−C = 152 Hz), 135.9 (s, 4C, Pt-Ar m-Ph), 135.7 (s, 3C, TtPh ipso-
151 Hz), 136.1 (s, 4C, Pt-Ar m-Ph), 135.9, 135.8 (s, 1C, 2C, TtPh ipso-
Ph), 131.1 (d, 2C, OPCCH, JP−C = 24 Hz), 131.1, 130.9 (s, 2C,
Ph), 131.3, 130.9 (s, 1C, 2C, TtPh p-Ph), 131.0 (d, 1C, 2C, OP
2
1C, TtPh p-Ph), 130.8 (d, 1C, OPCCH, 2JP−C = 24 Hz), 130.3, 130.2
CCH, JP−C = 25 Hz), 130.5, 130.4 (s, 2C, 4C, TtPh o-Ph), 130.1
2
(s, 4C, 2C, TtPh o-Ph), 128.6 (s, 2C, JPt−C = 907 Hz, Pt-Ar ipso-Ph),
(s, 2C, 3JPt−C = 24 Hz, Pt-Bn o-Ph), 128.4 (s, 2C, Pt-Bn m-Ph), 128.0
(s, 2C, Pt-Ar ipso-Ph), 127.5 (s, 4C, 2JPt−C = 54 Hz, Pt-Ar o-Ph), 126.4
1
2
127.1 (s, 4C, JPt−C = 57 Hz, Pt-Ar o-Ph), 124.9 (s, 2C, Pt-Ar p-Ph),
121.9, 121.8 (s, 4C, 2C, TtPh m-Ph), 22.3 (s, 1C, JPt−C = 665 Hz, Pt-
(s, 1C, JPt−C = 12 Hz, Pt-Bn p-Ph), 125.5 (s, 2C, Pt-Ar p-Ph), 121.7,
1
5
CH2-CH3), 16.8 (s, 1C, 2JPt−C = 43 Hz, Pt-CH2-CH3). Anal. Calcd for
C39H33F3N9O4PPtS: C, 46.52; H, 3.30; N, 12.52. Found: C, 46.24; H,
3.28; N, 12.29.
121.6 (s, 2C, 4C, TtPh m-Ph), 27.5 (s, 1C, JPt−C = 660 Hz, Pt-
1
CH2C6H5). HRMS (ESI) m/z Calcd: 919.2350 (M+). Found:
919.2314.
[(κ3-TtCy)Pt(Ph)2Et][X] (4b-L2). The procedure in general method A
was followed using ethyl iodide or ethyl triflate as the electrophile.
[(κ3-TtCy)Pt(Ph)2(CH2Ph)][BF4] (4d-L2). The procedure in general
1
method B was followed using benzyl iodide as the electrophile. H
1
NMR (CD2Cl2, 292 K, δ): 8.97, 8.87 (s, 2H, 1H, TtCyCH), 7.13−6.58
(m, 15H, Pt-CH2-C6H5 and Pt-C6H5), 4.64, 4.50 (m, 1H, 2H, CA-H),
NMR data for the OTf counterion complex are reported. H NMR
(CD2Cl2, 292 K, δ): 8.86, 8.77 (s, 2H, 1H, ThCyCH), 7.03−6.93 (m,
2
2
10H, Pt-C6H5), 4.63, 4.58 (m, 2H, 1H, CA-H), 2.94 (q, 2H, JPt−H
=
4.29 (s, 2H, JPt−H = 89 Hz, Pt-CH2-C6H5), 2.12−1.25 (m, 30H,
cyclohexyl). 31P{1H} NMR (CD2Cl2, 294 K, δ): −9.5 (s, 1P, TtCyP
67 Hz, Pt-CH2-CH3), 2.95−1.26 (m, 30H, cyclohexyl), 0.61 (s, 3H,
3JPt−H = 54 Hz, Pt-CH2-CH3). 31P{1H} NMR (CD2Cl2, 300 K, δ):
−7.2 (s, 1P, TtCyPO). 13C{1H} NMR (CD2Cl2, 292 K, δ): 136.3 (d,
2C, OPC, 1JP−C = 148 Hz), 136.2 (s, 4C, Pt-Ar m-Ph), 136.0 (d, 1C,
O). 13C{1H} NMR (CD2Cl2, 292 K, δ): 144.4 (s, 1C, JPt−C = 52 Hz,
2
Pt-Bn ipso-Ph), 136.3 (s, 4C, 3JPt−C = 7 Hz, Pt-Ar m-Ph), 135.9, 135.7
(d, 1C, 2C, OPC, 1JP−C = 148 Hz), 130.7, 130.6 (d, 3C, OPCCH,
2JP−C = 24 Hz), 130.0 (s, 2C, JPt−C = 24 Hz, Pt-Bn o-Ph), 128.4 (s,
3
1
2
OPC, JP−C = 150 Hz), 130.4 (d, 2C, OPCCH, JP−C = 24 Hz),
2
1
2C, 4JPt−C = 10 Hz, Pt-Bn m-Ph), 128.3 (s, 2C, 1JPt−C = 947 Hz, Pt-Ar
130.1 (d, 1C, OPCCH, JP−C = 25 Hz), 129.0 (s, 2C, JPt−C = 968
Hz, Pt-Ar ipso-Ph), 127.2 (s, 4C, 2JPt−C = 57 Hz, Pt-Ar o-Ph), 125.0 (s,
2C, Pt-Ar p-Ph), 63.4, 63.3 (s, 2C, 1C, CA), 33.3−33.2 (s, 1:1:1, 6C,
2
ipso-Ph), 127.3 (s, 4C, JPt−C = 55 Hz, Pt-Ar o-Ph), 126.0 (s, 1C,
5JPt−C = 12 Hz, Pt-Bn p-Ph), 125.2 (s, 2C, Pt-Ar p-Ph), 63.3, 63.2 (s,
CB), 25.1−24.9 (s, 1:1:1 and 2:1, 9C, CC and CD), 21.4 (s, 1C, 1JPt−C
=
1
1C, 2C, CA), 33.7−32.8 (s, 1:1:1, 6C, CB), 26.0 (s, 1C, JPt−C = 659
2
665 Hz, Pt-CH2-CH3), 16.9 (s, 1C, JPt−C = 43 Hz, Pt-CH2-CH3).
Hz, Pt-CH2C6H5), 25.0−24.9 (s, 1:1:1 and 2:1, 9C, CC and CD).
HRMS (ESI) m/z Calcd: 875.3602 (M+). Found: 875.3565.
HRMS (ESI) m/z Calcd: 937.3758 (M+). Found: 937.3724.
[(κ3-TtPh)Pt(Ph)2(CH2CHCH2)][BF4] (4c-L1). The procedure in
general method B was followed using allyl iodide as the electrophile.
1H NMR (CD2Cl2, 294 K, δ): 9.28, 9.30 (s, 2H, 1H, TtPhCH), 7.80,
7.58 (m, 15H, TtPhC6H5), 7.22 (d, 4H, 3JPt−H = 50 Hz, Pt-Ar Ho), 7.08,
7.02 (m, 6H, Pt-Ar Hm and Hp), 5.83 (m, 1H, Pt-CH2CH⟩CH2), 5.10
Synthesis of [(κ3-TtR)Pt(Me)2H][X] Complexes. [(κ3-TtPh)-
PtMe2H][BF4] (5-L1). Into a 50 mL Schlenk flask was placed
κ2-TtPhPt(CH3)2 (0.021 g, 0.030 mmol) under nitrogen. CH2Cl2
(10 mL) was added through the septum, and the flask was cooled
to −78 °C. The solution was then treated with 1.0 equiv (3.7 μL, 0.030
mmol) of ca. 8.0 M HBF4·Et2O, and it was allowed to warm to room
temperature. The solvent was evaporated and the resulting solid was
triturated with pentane to afford [(κ3-TtPh)Pt(Me)2H][BF4] (0.023 g,
3
4
(d, 1H, JH−H = 19 Hz, JPt−H = 18 Hz, Pt-CH2CH⟩CHtrans to H), 4.92
(d, 1H, 3JH−H = 10 Hz, 4JPt−H = 15 Hz, Pt-CH2CH⟩CHs to H), 3.90 (d,
2H, 2JPt−H = 86 Hz, Pt-CH2CH⟩CH2). 31P{1H} NMR (CD2Cl2, 270 K,
δ): −8.0 (s, 1P, TtPhPO). 13C{1H} NMR (CD2Cl2, 293 K, δ): 140.9
1
0.029 mmol) as a white powder. H NMR (CD2Cl2, 294 K, δ): 9.30
(s, 2H, 1H, TtPhCH), 7.85−7.24 (m, 15H, TtPhC6H5), 1.60 (s, 6H,
2
(s, 1C, JPt−C = 65 Hz, Pt-CH2CHCH2), 136.8 (d, 2C, OPC,
1
2JPt−H = 70 Hz, Pt-CH3), −19.91 (s, 1H, JPt−H = 1541 Hz, Pt-H).
1JP−C = 150 Hz), 136.7 (d, 1C, OPC, 1JP−C = 150 Hz), 136.1 (s, 4C,
31P{1H} NMR (CD2Cl2, 300 K, δ): −6.6 (s, 1P, TtPhPO). 13C {1H}
Pt-Ar m-Ph), 135.7 (s, 3C, TtPh ipso-Ph), 131.2, 131.1 (s, 2C, 1C, TtPh
2
1
p-Ph), 130.9 (d, 3C, OPCCH, JP−C = 24 Hz), 130.5, 130.4 (s, 4C,
NMR (CD2Cl2, 293 K, δ): 135.7 (d, 2C, OPC, JP−C = 152 Hz),
235
dx.doi.org/10.1021/om2007997 | Organometallics 2012, 31, 225−237