M. G. Murali et al. / Tetrahedron Letters 53 (2012) 157–161
20. Roncali, J. Chem. Rev. 1992, 92, 711–738.
161
bias voltage, which is a typical diode characteristic. The polymer
shows threshold voltage of 6.5 V. The lower threshold voltage
can be attributed to the lower energy barrier for electron injection
from the aluminum electrode.
21. Braun, D.; Gustafsson, G.; McBranch, D.; Heeger, A. J. J. Appl. Phys. 1992, 72,
564–568.
22. Chen, F.; Metha, P. G.; Takiff, L.; McCullough, R. D. J. Mater. Chem. 1996, 6,
1763–1766.
23. Yang, Y.; Pei, Q. J. Appl. Phys. 1997, 81, 3294–3298.
24. Bao, Z.; Peng, Z.; Galvin, M. E.; Chandross, E. A. Chem. Mater. 1998, 10, 1201–
1204.
25. Lee, Y. Z.; Chen, X.; Chen, S. A.; Wei, P. K.; Fann, W. S. J. Am. Chem. Soc. 2001,
123, 2296–2307.
26. The monomer M1 was synthesized by Suzuki biaryl coupling reaction method.
In conclusion, we report the synthesis of a new donor–acceptor
(D–A) type conjugated polymer (PTDOF) containing 3,4-didodecyl-
oxythiophene, fluorene and 1,3,4-oxadiazole units via a Wittig
method. The polymer was well characterized by 1H NMR, FTIR,
TGA, UV–vis absorption, fluorescence emission, and cyclic voltam-
metry techniques. The polymer (PDTOF) showed good solubility
in the common organic solvents such as chloroform, tetrahydrofu-
ran, and chlorobenzene with good film forming properties. The
electrochemical properties revealed that the polymer possesses
high lying HOMO energy levels of ꢀ5.45 eV and low-lying LUMO
energy levels of ꢀ3.58 eV. The thermogravimetric studies indicated
that the polymer is thermally stable upto ꢃ320 °C. The optical band
gap of the polymer is found to be 2.42 eV, which could be attributed
to the D–A structure of the polymer backbone. The polymer light-
emitting diode devices were fabricated with a configuration of
ITO/PEDOT: PSS/PDTOF/Al using the polymer PDTOF as the emit-
ting layer. The emission maximum of the EL spectra originated at
524 nm. The EL spectrum of the polymer was red shifted relative
to its PL spectra. The PLEDs using PDTOF as the emissive layer emit-
ted green light with a CIE coordinate of (0.34, 0.47) under a driving
voltage of 5 V. These preliminary studies of EL properties of the
PLED device show that the polymer PDTOF will be a good candidate
as active material in the field of organic light-emitting diodes.
Under argon atmosphere, to
a mixture of dibromo compound 4 (0.5 g,
0.548 mmol) and 4-formylphenylboronic acid (0.172 g, 1.2 mmol) in toluene
and ethanol 10 ml (1:1 volume ratio), 2 M Na2CO3 (aq) was added. After 30 min
of degassing with argon, 3 mol% (0.119 g, 0.164 mmol) of Pd (PPh3)4 was
added. The reaction mixture was stirred at 80 °C for 12 h under argon. After
completion of reaction (progress of the reaction was monitored by TLC), it was
poured into distilled water and extracted with chloroform. The organic layer
was dried with MgSO4 and concentrated. The crude product was purified by
silica gel column using a mixture of hexane and ethyl acetate (10/2) as an
eluent, giving a yellow fluorescent solid. Yield: 70%. mp: 207–208 °C. 1H NMR
(400 MHz, CDCl3, d): 10.05 (s, 2H), 7.97–7.52 (m, 12H), 4.33 (t, J = 6.8 Hz, 4H),
p
1.92–1.24 (m, 40H), 0.86 (t, J = 6.4 Hz, 6H). FTIR (cmꢀ1): 2917 and 2849 (–C–
H), 1690 (–C@O), 1570(C@N), 1513, 1457, 1379,1288, 1210 1020. Element.
Anal. Calcd for C54H64N4O6S3: C, 67.47; H, 6.72; N, 5.83; S, 9.99. Found: C,
67.35; H, 6.64; N, 5.92; S, 10.10. Synthesis of monomer M2: A mixture of 6 (1 g,
2.02 mmol) and triphenylphosphine(1.32 g, 5.06 mmol) in DMF (10 ml) was
heated for 12 h at 105–110 °C under nitrogen. The reaction mixture was cooled
to room temperature and added was slowly into 100 ml of diethyl ether while
stirring. The white solid was filtered, washed with ether, and dried in a vacuum
oven at 40 °C. Yield: 90%. mp:>200 °C. 1H NMR (400 MHz, CDCl3, d): 8.02–7.82
(m, 30H), 7.58–7.17 (m, 6H), 5.6–5.56 (d, 4H), 1.54–1.50 (m, 4H), 1.16–0.78 (m,
p
16H), 0.2 (br, 6H). FTIR
(cmꢀ1): 3407, 3340, 2921, 2852, 1434, 1109, 744.
Element. Anal. Calcd for C63H66 Br2P2: C 72.40, H 6.37. Found: C 72.32, H 6.42.
Synthesis of polymer PDTOF: A solution of sodium(20 mg, 0.936 mmol) in 2 ml
of anhydrous ethanol was added drop wise at ambient temperature under
argon to a mixture of dialdehyde M1 (0.3 g, 0.312 mmol) and phosphonium
salt M2 (0.35 g, 0.312 mmol) in 6 ml of dry chloroform. The mixture was
stirred at room temperature for 12 h. The reaction mixture was slowly poured
into 100 ml of methanol. The precipitated polymer was filtered off. The crude
polymer was redissolved in chloroform and precipitated in methanol several
times. The product was filtered vacuum dried to obtain the yellow powder.
Yield: 65%. 1H NMR (400 MHz, CDCl3, d): 7.97–6.54 (m, 22H), 4.32 (t, 4H), 1.91–
Supplementary data
Supplementary data associated with this article can be found, in
p
0.86 (m, 66H), 0.76 (t, 6H). FTIR (cmꢀ1): 2917 and 2848 (–C–H), 1573, 1482,
References and notes
1452, 1368, 1027, 802. Element. Anal. Calcd for C81H98N4O4S3: C, 75.54; H,
7.68; N, 4.35; S, 7.45. Found: C, 75.32; H, 7.54; N, 4.22; S, 7.52.
27. Udayakumar, D.; Adhikari, A. V. Synth. Met. 2006, 156, 1168–1173.
28. Zheng, M.; Ding, L.; Lin, Z.; Karasz, F. E. Macromolecules 2002, 35, 9939–9946.
29. Eldo, J.; Ajayaghosh, A. Chem. Mater. 2002, 14, 410–418.
30. Eunhee, L.; Jung, B. J.; Shim, H. K. Macromolecules 2003, 36, 4288–4293.
31. Jin, S. H.; Park, H. J.; Kim, J. Y.; Lee, K.; Lee, S. P.; Moon, D. K.; Lee, H. J.; Gal, Y. S.
Macromolecules 2002, 35, 7532–7534.
32. Sung, H. H.; Lin, H. C. Macromolecules 2004, 37, 7945–7954.
33. Harrison, N. T.; Baigent, D. R.; Samuel, I. D. W.; Friend, R. H.; Grimsdale, A. C.;
Moratti, S. C.; Holmes, A. B. Phys. Rev. B 1996, 53, 15815–15822.
34. Joshi, H. S.; Jamshidi, R.; Tor, Y. Angew. Chem., Int. Ed. Engl. 1999, 38, 2721–
2725.
1. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.;
Friend, R. H.; Burn, P. L.; Holmes, A. B. Nature 1990, 347, 539–541.
2. Yang, Y.; Pei, Q.; Heeger, A. J. J. Appl. Phys. 1996, 79, 934–939.
3. Jin, S. H.; Jang, M. S.; Suh, H. S.; Cho, H. N.; Lee, J. H.; Gal, Y. S. Chem. Mater. 2002,
14, 643–650.
4. Bernius, M. T.; Inbasekaran, M.; O’Brien, J.; Wu, W. Adv. Mater. 2000, 12, 1737–
1750.
5. Choi, M. C.; Kim, Y.; Ha, C. S. Prog. Polym. Sci. 2008, 33, 581–630.
6. Greenham, N. C.; Moratti, S. C.; Bradley, D. D. C.; Friend, R. H.; Holmes, A. B.
Nature 1993, 365, 628–630.
7. Roncali, J. Chem. Rev. 1997, 97, 173–206.
8. Buschel, M.; Ajayaghosh, A.; Eldo, J.; Daub, J. Macromolecules 2002, 35, 8405–
8412.
36. Chen, Y.; Huang, Y. Y.; Wu, T. Y. J. Polym. Sci., Part A: Poly. Chem. 2002, 40, 2927–
2936.
9. Eldo, J.; Ajayaghosh, A. Tetrahedron Lett. 2000, 41, 6241–6244.
10. Anand, K. B.; Ashish, A.; Tripathi, A. K.; Mohapatra, Y. N.; Ajayaghosh, A.
Macromolecules 2007, 40, 2657–2665.
37. De Leeuw, D. M.; Simenon, M. M. J.; Brown, A. B.; Einerhand, R. E. F. Synth. Met.
1997, 87, 53–59.
38. Ma, C. Q.; Fonrodona, M.; Schikora, M. C.; Wienk, M. M.; Janssen, R. A. J.;
Bauerle, P. Adv. Funct. Mater. 2008, 18, 3323–3331.
11. Tour, J. M. Adv. Mater. 1994, 6, 190–198.
12. Pei, Q.; Yang, Y. J. J. Am. Chem. Soc. 1996, 118, 7416–7417.
13. Parker, I. D. J. Appl. Phys. 1994, 75, 1656–1664.
14. Strukelj, M.; Papadimitrakopoulous, F. T.; Miller, M.; Rothberg, L. J. Science
1995, 267, 1969–1972.
39. Hou, J.; Park, M. H.; Zhang, S.; Yao, Y.; Chen, L. M.; Li, J. H.; Yang, Y.
Macromolecules 2008, 41, 6012–6018.
40. Jin, S. H.; Kang, Y. S.; Kim, Y. M.; Chan, Y. U. Macromolecules 2003, 36, 3841–
3847.
15. Ohmori, Y.; Horonaka, Y.; Yoshida, M.; Akihiko, F.; Yoshino, K. Jap. J. Appl. Phy.
1996, 35, 4105–4109.
16. Havinga, E. E.; Hoeve, W.; Wynberg, H. Synth. Met. 1993, 55, 299–306.
17. Ajayaghosh, A. Chem. Soc. Rev. 2003, 32, 181–191.
18. Lee, D. W.; Kwon, K. Y.; Jin, J. I.; Park, Y.; Kim, Y. R.; Hwang, I. W. Chem. Mater.
2001, 13, 565–574.
41. Bradley, D. D. C. Synth. Met. 1993, 54, 401–415.
42. Cervini, R.; Li, X. C.; Spencer, G. P. C.; Holmes, A.; Moratti, S. C.; Friend, R. H.
Synth. Met. 1997, 84, 359–360.
43. Grimsdale, A. C.; Chan, K. L.; Martin, R. E.; Jokisz, P. G.; Holmes, A. B. Chem. Rev.
2009, 109, 897–1091.
19. Chen, Y.; Sheu, R. B.; Wu, T. J. J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 725–731.