K. Hackelöer, G. Schnakenburg, S. R. Waldvogel
FULL PAPER
MgSO4. Removal of the solvent under reduced pressure and purifi-
cation by column chromatography on silica (cyclohexane/ethyl
acetate, 2:1) yielded a single diastereomer (840 mg, 88%) as a yel-
low solid. RF (SiO2; cyclohexane/ethyl acetate, 2:1) = 0.17. 1H
with the Kompetenzzentrum der Integrierten Naturstoff-For-
schung (University of Mainz).
[1] a) M. Friedman, B. E. Mackey, H.-J. Kim, I.-S. Lee, K.-R. Lee,
S.-U. Lee, E. Kozukue, N. Kozukue, J. Agric. Food Chem. 2007,
55, 243–253; b) Y. Uruma, K. Sakamoto, K. Takumi, M. Doe,
Y. Usuki, H. Iio, Tetrahedron 2007, 63, 5548–5553; c) M. H. A.
Zarga, S. S. Sabri, T. H. Al-Tel, Atta-ur-Rahman, Z. Shah, M.
Feroz, J. Nat. Prod. 1991, 54, 936–940; d) R. J. Lin, M. J.
Cheng, J. C. Huang, W. L. Lo, Y. T. Yeh, C. M. Yen, C. M. Lu,
C. Y. Chen, J. Nat. Prod. 2009, 1816–1824; e) E. Tojo, J. Nat.
Prod. 1989, 52, 909–921.
[2] a) P. S. Pelletier, J. Caventon, Ann. Chim. Phys. 1820, 14, 69; b)
H. Corrodi, E. Hardegger, Helv. Chim. Acta 1955, 38, 2030–
2033.
[3] a) E. terHaar, H. S. Rosenkranz, E. Hamel, B. W. Day, Bioorg.
Med. Chem. 1996, 4, 1659–1671; b) Y. Itoh, A. Brossi, E.
Hamel, C. M. Lin, Helv. Chim. Acta 1988, 71, 1199–1209; c)
G. R. Petti, S. B. Singh, E. Hamel, C. M. Lin, D. S. Alberts, D.
Garcia-Knebel, Experientia 1989, 45, 209.
[4] a) J. Wolff, L. Knipling, H. J. Cahnmann, G. Palumbo, Proc.
Natl. Acad. Sci. USA 1991, 88, 2820–2824; b) S. Rao, L. F. He,
S. Chakravarty, I. Ojima, G. A. Orr, S. B. Horwitz, J. Biol.
Chem. 1999, 274, 37990–37994.
[5] a) A. Enoki, S. Takahama, K. Kitao, Mokuzai Gakkaishi 1977,
23, 587–593; b) J. Y. Sanceau, R. Dhal, E. Brown, Nat. Prod.
Lett. 1992, 4, 221–224.
NMR (400 MHz, CDCl3): δ = 1.20 (t, 3J5,4 = 7.1 Hz, 3 H), 3.61 (s,
3
3 H), 3.82 (s, 3 H), 3.90 (s, 3 H), 3.91 (s, 3 H), 4.22 (q, J4,5
=
7.1 Hz, 2 H), 6.74 (d, 3J5Ј,6Ј = 8.4 Hz, 1 H), 6.80 (d, 3J11,12 = 8.4 Hz,
1 H), 6.84 (d, J2Ј,6Ј = 2.1 Hz, 1 H), 6.99 (dd, J6Ј,5Ј = 8.5, J6Ј,2Ј
4
3
4
=
3
4
2.0 Hz, 1 H), 7.50 (dd, J12,11 = 8.4, J12,8 = 2.0 Hz, 1 H), 7.61 (d,
4J8,12 = 2.0 Hz, 1 H), 7.85 (s, 1 H) ppm. 13C NMR (100 MHz,
CDCl3): δ = 14.1, 55.5, 55.8, 56.0, 56.0, 61.3, 110.0, 110.2, 110.8,
112.3, 124.9, 124.9, 125.8, 128.8, 129.6, 142.0, 148.7, 149.3, 150.9,
154.0, 165.4, 194.6 ppm. MS (EI, 70 eV): m/z (%) = 400 (83)
[M]·+, 354 (60) [M – C2H5O – H]·+, 326 (75) [M – C2H5O – H –
CO]·+, 299 (30) [M – C2H5O – CO – CO]+, 165 (100) [C9H9O3]+.
HRMS (EI): calcd. for C22H24O7 [M]·+ 400.1522; found 400.1521.
C22H24O7 (400.43): calcd. C 65.99, H 6.04; found C 65.27, H 6.08.
Ethyl
2,3,9,10-Tetramethoxy-5H-dibenzo[a,c][7]annulene-6-carb-
oxylate (3a): The oxidative coupling was carried out under an inert
gas with a solution of 9a (158 mg, 0.41 mmol) in anhydrous dichlo-
romethane (6 mL) at –20 °C.
A solution of PIFA (194 mg,
0.45 mmol) and BF3·OEt2 (0.21 mL, 0.82 mmol) in anhydrous
dichloromethane (6 mL) was prepared separately and added by sy-
ringe to the chilled substrate over a period of 20 min. After the
mixture had been stirred for 1.5 h, it was warmed to ambient tem-
perature, and stirring was continued for another 30 min. The reac-
tion was quenched by the addition of satd. NaHCO3 solution
(10 mL). The separated aqueous fraction was extracted with ethyl
acetate (3ϫ 10 mL). The combined organic fractions were washed
with brine (10 mL) and dried with anhydrous MgSO4. The crude
product was purified by flash column chromatography on silica
(cyclohexane/ethyl acetate, 3:1), which yielded 86 mg (55%) of the
desired product as a slightly yellow solid. Single crystals of 3a were
obtained by diffusion of n-heptane to a solution of 3a in dichloro-
methane at ambient conditions. RF (SiO2; cyclohexane/ethyl acet-
ate, 3:1) = 0.22. M.p. 146 °C (CH2Cl2/n-heptane). 1H NMR
[6] J. W. Lippert, Bioorg. Med. Chem. 2007, 15, 605–615.
[7] a) T. Graening, H. G. Schmalz, Angew. Chem. Int. Ed. 2004,
43, 3230–3256; b) T. Graening, H. G. Schmalz, Angew. Chem.
2004, 116, 3292–3318.
[8] A. I. Scott, Nature 1960, 186, 556.
[9] P. Magnus, J. Schultz, T. Gallagher, J. Am. Chem. Soc. 1985,
107, 4984–4988.
[10] a) B. Kramer, S. R. Waldvogel, Angew. Chem. Int. Ed. 2004,
43, 2446–2449; b) B. Kramer, S. R. Waldvogel, Angew. Chem.
2004, 116, 2501–2503; c) B. Kramer, A. Averhoff, S. R. Wald-
vogel, Angew. Chem. Int. Ed. 2002, 41, 2981–2982; d) B.
Kramer, A. Averhoff, S. R. Waldvogel, Angew. Chem. 2002,
114, 3103–3104.
3
(300 MHz, CDCl3): δ = 1.34 (t, J13,12 = 7.1 Hz, 3 H), 2.74 (br. s,
[11] a) A. Spurg, G. Schnakenburg, S. R. Waldvogel, Chem. Eur. J.
2009, 15, 13313–13317; b) S. R. Waldvogel, R. Fröhlich, C. A.
Schalley, Angew. Chem. Int. Ed. 2000, 39, 2472–2475; c) S.
Waldvogel, R. Fröhlich, C. Schalley, Angew. Chem. 2000, 112,
2580–2583; d) S. R. Waldvogel, A. R. Wartini, P. H. Ras-
mussen, J. Rebek, Tetrahedron Lett. 1999, 40, 3515–3518; e)
S. R. Waldvogel, E. Aits, C. Holst, R. Fröhlich, Chem. Com-
mun. 2002, 1278–1279; f) B. Kramer, R. Fröhlich, K. Bergan-
der, S. R. Waldvogel, Synthesis 2003, 91–96; g) D. Mirk, S. R.
Waldvogel, Tetrahedron Lett. 2004, 45, 7911–7914; h) S. R.
Waldvogel, Synlett 2002, 622–624; i) N. Boshta, M. Bomkamp,
G. Schnakenburg, S. R. Waldvogel, Chem. Eur. J. 2010, 16,
3459–3466; j) N. M. Boshta, M. Bomkamp, G. Schnakenburg,
S. R. Waldvogel, Eur. J. Org. Chem. 2011, 1985–1992.
[12] P. Rempala, J. Kroulik, B. T. King, J. Org. Chem. 2006, 71,
5067–5081.
1 H), 3.81–3.86 (m, 1 H), 3.89 (s, 3 H), 3.91 (s, 3 H), 3.94 (s, 3 H),
3
3.99 (s, 3 H), 4.26 (q, J12,13 = 7.1 Hz, 2 H), 6.85 (s, 1 H), 6.91 (s,
1 H), 6.99 (s, 1 H), 7.15 (s, 1 H), 7.58 (s, 1 H) ppm. 13C NMR
(75 MHz, CDCl3): δ = 14.3, 31.4, 55.9, 55.9, 56.0, 56.2, 60.7, 110.4,
111.7, 112.3, 112.6, 127.3, 129.8, 131.0, 133.2, 134.2, 136.5, 147.5,
147.6, 148.9, 149.2, 166.1 ppm. MS (EI, 70 eV, 120 °C): m/z (%) =
384 (70) [M]·+, 355 (30) [M – C2H5]+, 339 (10) [M – C2H5O]+, 311
(100) [M – C2H5 – CO2]+, 267 (17) [C16H11O4]+, 225 (7), 181 (8),
152 (9). HRMS (EI): calcd. for C22H24O6 [M]·+ 384.1573; found
384.1574. C22H24O6 (384.43): calcd. C 68.10, H 5.99; found C
68.32, H 6.19.
CCDC-827036 (for 3a), -827037 (for 3f), and -827038 (for 10) con-
tain the supplementary crystallographic data for this paper. These
data can be obtained free of charge from The Cambridge Crystallo-
graphic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
[13] B. T. King, J. Kroulik, C. R. Robertson, P. Rempala, C. L. Hil-
ton, J. D. Korinek, L. M. Gortari, J. Org. Chem. 2007, 72,
2279–2288.
Supporting Information (see footnote on the first page of this arti-
cle): Additional experimental procedures, complete assignment of
NMR spectroscopic data, analytical data for all products and inter-
mediates.
[14] B. Kramer, R. Fröhlich, S. R. Waldvogel, Eur. J. Org. Chem.
2003, 3549–3554.
[15] K. Hackelöer, G. Schnakenburg, S. R. Waldvogel, Org. Lett.
2011, 13, 916–919.
[16] a) Y. Kita, H. Tohma, M. Inagaki, K. Hatanaka, T. Yakura,
Tetrahedron Lett. 1991, 32, 4321–4324; b) Y. Kita, H. Tohma,
K. Hatanaka, T. Takada, S. Fujita, S. Mitoh, H. Sakurai, S.
Oka, J. Am. Chem. Soc. 1994, 116, 3684–3691; c) Y. Kita, M.
Gyoten, M. Ohtsubo, H. Tohma, T. Takada, Chem. Commun.
1996, 1481–1482; d) T. Takada, M. Arisawa, M. Gyoten, R.
Hamada, H. Tohma, Y. Kita, J. Org. Chem. 1998, 63, 7698–
Acknowledgments
K. H. thanks the Degussa Stiftung and the Jürgen Manchot Stif-
tung for granting fellowships. S. R. W. appreciates the collaboration
6318
www.eurjoc.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2011, 6314–6319