S. Han et al. / Inorganic Chemistry Communications 15 (2012) 78–83
83
spectrometer equipped with a Bruker high sensitivity cylindrical resonator. Variable
temperature studies were performed using a Bruker variable temperature unit (ER
4111VT) with liquid nitrogen reservoir and quartz dewar insert. ESR spectra and ener-
gy level diagrams were simulated using the EasySpin19 set of MATLAB program.
[33] Synthesis of Cu2(OOC-C6H4-N3)4(quinoline)2 (SBU1): 4-azidobenzoic acid (10 mmol,
1.631 g) was suspended in 40 ml mixture solution of water and ethanol (volume ratio
1:1). Copper carbonate basic (2.5 mmol, 552.7 mg) was added into the suspension
portion-wise. The suspension was stirred for several hours until a green precipitate
formed. The green powder was obtained by filtration, and then the powder was dis-
solved in about 40 mL acetonitrile in presence of 5 mL quinoline and then divided
into 10 small vials. Green block crystals [Cu2(OOC-C6H4-N3)4(quinoline)2]·2CH3CN
formed in these vials in about 3–4 days with ~80% yield. Crystallographic data for
SBU1·2CH3CN: C50H36Cu2N16O8. CCDC reference number 828956. M=1116.05, TRI-
GONAL, space group: P-1, a=10.852(8) Å, b=9.292(6) Å, c=13.409(9) Å, alpha=
77.048(13), beta=80.273(11), gamma=69.079(11), Z=1, V=1224.9(15) Å [3]. R
values: (IN2σ(I)) R1=0.1368, wR2=0.3620; GOF=1.085. The green crystals,
SBU1·2CH3CN, were collected, dried and then re-dissolved into chloroform. SBU1
was obtained by rotovapping the chloroform solution to remove uncoordinated aceto-
Data Centre) reference number for SBU1·2CH3CN: 828956. Copy of the
data can be obtained free of charge on application to CCDC, 12 Union
Road, Cambridge CB2 1EZ (Telefax: +44 1223 336408; e-mail:
Supplementary data to this article can be found online at doi:10.
1016/j.inoche.2011.09.043.
References
[1] S. Han, Y. Wei, C. Valente, R.S. Forgan, J.J. Gassensmith, R.A. Smaldone, H. Naka-
nishi, A. Coskun, J.F. Stoddart, B.A. Grzybowski, Angewandte Chemie International
Edition 50 (2011) 276–279.
[2] M. Eddaoudi, D.B. Moler, H.L. Li, B.L. Chen, T.M. Reineke, M. O'Keeffe, O.M. Yaghi,
Accounts of Chemical Research 34 (2001) 319–330.
[3] B. Moulton, M.J. Zaworotko, Chemical Reviews 101 (2001) 1629–1658.
[4] Z. Ma, B. Moulton, Coordination Chemistry Reviews 255 (2011) 1623–1641.
[5] C. Janiak, Dalton Transactions (2003) 2781–2804.
[6] A. Hori, K. Yamashita, T. Kusukawa, A. Akasaka, K. Biradha, M. Fujita, Chemical
Communications (2004) 1798–1799.
[7] D.A. Evans, K.A. Woerpel, M.J. Scott, Angewandte Chemie International Edition 31
(1992) 430–432.
[8] Z. Ma, B. Moulton, Crystal Growth and Design 7 (2007) 196–198.
[9] M. Fujita, Y.J. Kwon, O. Sasaki, K. Yamaguchi, K. Ogura, Journal of the American
Chemical Society 117 (1995) 7287–7288.
[10] S.A. Bourne, J.J. Lu, A. Mondal, B. Moulton, M.J. Zaworotko, Angewandte Chemie
International Edition 40 (2001) 2111–2113.
[11] B.S. Luisi, V.C. Kravtsov, B. Moulton, Crystal Growth and Design 6 (2006) 2207–2209.
[12] F.A.A. Paz, J. Rocha, J. Klinowski, T. Trindade, F.N. Shi, L. Mafra, Progress in Solid
State Chemistry 33 (2005) 113–125.
[13] C. Janiak, Angewandte Chemie International Edition 36 (1997) 1431–1434.
[14] B. Luisi, Z. Ma, B. Moulton, Journal of Chemical Crystallography 37 (2007) 743–747.
[15] P. Neves, S. Gago, S.S. Balula, A.D. Lopes, A.A. Valente, L. Cunha-Silva, F.A.A. Paz, M.
Pillinger, J. Rocha, C.M. Silva, I.S. Goncalves, Inorganic Chemistry 50 (2011)
3490–3500.
[16] M. Panda, N.D. Paul, S. Joy, C.H. Hung, S. Goswami, Inorganica Chimica Acta 372
(2011) 168–174.
[17] P.J. Beldon, L. Fabian, R.S. Stein, A. Thirumurugan, A.K. Cheetham, T. Friscic,
Angewandte Chemie International Edition 49 (2010) 9640–9643.
[18] D. Braga, F. Grepioni, L. Maini, R. Brescello, L. Cotarca, CrystEngComm 10 (2008)
469–471.
[19] L.M. Huang, H.T. Wang, J.X. Chen, Z.B. Wang, J.Y. Sun, D.Y. Zhao, Y.S. Yan, Micropo-
rous and Mesoporous Materials 58 (2003) 105–114.
[20] F.A. Cotton, C. Lin, C.A. Murillo, Accounts of Chemical Research 34 (2001)
759–771.
[21] F.A. Cotton, C. Lin, C.A. Murillo, Proceedings of the National academy of Sciences
of the United States of America 99 (2002) 4810–4813.
[22] S. Furukawa, M. Ohba, S. Kitagawa, Chemical Communications (2005) 865–867.
[23] S.J. Garibay, Z.Q. Wang, K.K. Tanabe, S.M. Cohen, Inorganic Chemistry 48 (2009)
7341–7349.
[24] Z.Q. Wang, K.K. Tanabe, S.M. Cohen, Chemistry A European Journal 16 (2010)
212–217.
[25] K.K. Tanabe, S.M. Cohen, Chemical Society Reviews 40 (2011) 498–519.
[26] M. Tonigold, J. Hitzbleck, S. Bahnmuller, G. Langstein, D. Volkmer, Dalton Transac-
tions (2009) 1363–1371.
[27] W.G. Lu, D.Q. Yuan, A. Yakovenko, H.C. Zhou, Chemical Communications 47
(2011) 4968–4970.
[28] W.-Z. Chen, P.E. Fanwick, T. Ren, Inorganic Chemistry 46 (2007) 3429–3431.
[29] W.Z. Chen, T. Ren, Organometallics 23 (2004) 3766–3768.
[30] M. Wang, W. Lan, Y. Zheng, T.R. Cook, H.S. White, P.J. Stang, Journal of the
American Chemical Society 133 (2011) 10752–10755.
[31] K. Sumida, J. Arnold, Journal of Chemical Education 88 (2011) 92–94.
[32] Single-crystal X-ray diffraction data were collected on a BRUKER SMART-APEX CCD dif-
fractometer using Mo Kα radiation (λ=0.71073 Å). The structure was solved by direct
methods and refined by full-matrix least-squares refinement with anisotropic displace-
ment parameters for all non-hydrogen atoms. The hydrogen atoms were generated
geometrically and included in the refinement with fixed position and thermal param-
eters. IR spectra were recorded on an ATI Mattson Infinity series FTIR instrument. NMR
experiments were recorded on either a Bruker DRX-300 with a z-gradient BBI probe or
nitrile molecules in the crystal structure. IR (DMSO, 2500–1400 cm−1): 2122.5 cm−1
,
1630.2 cm−1
, , , . 1H NMR (DMSO-d6,
1569.4 cm−1 1501.4 cm−1 1461.4 cm−1
300 MHz): δ 9.31(very broad), 8.43, 8.10, 7.79, 7.69, 7.60 ppm. 13C NMR (DMSO-d6):
δ 135.3, 128.9, 128.09, 126.26, 39.4 ppm.
[34] R. Huisgen, Helvetica Chimica Acta 50 (1967) 2421-&.
[35] V.V. Rostovtsev, L.G. Green, V.V. Fokin, K.B. Sharpless, Angewandte Chemie
International Edition 41 (2002) 2596–2599.
[36] S. Gauthier, N. Weisbach, N. Bhuvanesh, J.A. Gladysz, Organometallics 28 (2009)
5597–5599.
[37] R.A. Decre´au, J.P. Collman, Y. Yang, Y. Yan, N.K. Devaraj, Journal of Organic Chem-
istry 72 (2007) 2794–2802.
[38] A.R. McDonald, H.P. Dijkstra, B.M.J.M. Suijkerbuijk, G.P.M. van Klink, G. van Koten,
Organometallics 28 (2009) 4689–4699.
[39] V.D. Bock, H. Hiemstra, J.H. van Maarseveen, European Journal of Organic Chem-
istry (2006) 51–68.
[40] Synthesis of Cu2(OOC-C6H4-C2HN3-COOCH3)4·(quinoline)2 (1): 0.25 mmol of SBU1
was added into
a round flask. Then 4 mL THF and 100 μl methyl propiolate
(1.12 mmol) were added to the flask. Reaction mixtures were stirred at room temper-
ature for 9 days. Green solid product 1 was obtained by filtration (washed with
cool THF and hexane for several times). The product was first air dried and then
dried under vacuum for~4 – 6 hours. Yield: 82%. IR (DMSO, 2500–1400 cm−1):
1738.89 cm−1
1461.52 cm−1
,
.
1636.35 cm−1
,
1609.25 cm−1(sh), 1581.26 cm−1
,
1545.79,
1H NMR (DMSO-d6, 400 MHz):
δ 9.29, 8.46, 8.18, 7.81, 7.60,
3.79 ppm. 13C NMR (DMSO-d6, 400 MHz): δ 160.17, 139.37, 138.16, 129.09, 126.93,
126.54, 51.79
[41] Z. Zhou, C.J. Fahrni, Journal of the American Chemical Society 126 (2004) 8862–8863.
[42] J.M. Brink, R.A. Rose, R.C. Holz, Inorganic Chemistry 35 (1996) 2878–2885.
[43] F. Arnesano, L. Banci, I. Bertini, I.C. Felli, C. Luchinat, A.R. Thompsett, Journal of the
American Chemical Society 125 (2003) 7200–7208.
[44] J.H. Satcher, A.L. Balch, Inorganic Chemistry 34 (1995) 3371–3373.
[45] N.N. Murthy, K.D. Karlin, I. Bertini, C. Luchinat, Journal of the American Chemical
Society 119 (1997) 2156–2162.
[46] Y. Cohen, L. Avram, L. Frish, Angewandte Chemie International Edition 44 (2005)
520–554.
[47] Z. Ma, B. Moulton, Molecular Pharmaceutics 4 (2007) 373–385.
[48] L. Allouche, A. Marquis, J.M. Lehnl, Chemistry A European Journal 12 (2006)
7520–7525.
[49] T. Megyes, H. Jude, T. Grosz, I. Bako, T. Radnai, G. Tarkanyi, G. Palinkas, P.J. Stang,
Journal of the American Chemical Society 127 (2005) 10731–10738.
[50] M. Melnik, Coordination Chemistry Reviews 36 (1981) 1–44.
[51] J.E. Weder, T.W. Hambley, B.J. Kennedy, P.A. Lay, D. MacLachlan, R. Bramley, C.D.
Delfs, K.S. Murray, B. Moubaraki, B. Warwick, J.R. Biffin, H.L. Regtop, Inorganic
Chemistry 38 (1999) 1736–1744.
[52] B. Bennett, W.E. Antholine, V.M. D'Souza, G.J. Chen, L. Ustinyuk, R.C. Holz, Journal
of the American Chemical Society 124 (2002) 13025–13034.
[53] J. Casanova, G. Alzuet, J. Latorre, J. Borras, Inorganic Chemistry 36 (1997)
2052–2058.
[54] J. Comarmond, P. Plumere, J.M. Lehn, Y. Agnus, R. Louis, R. Weiss, O. Kahn, I.
Morgensternbadarau, Journal of the American Chemical Society 104 (1982)
6330–6340.
[55] N.M. Atherton, Principles of Electron Spin Resonance, Ellis Horwood PTR Prentice
Hall, 1993.
[56] M. Bersohn, J.C. Baird, An Introduction to Electron Paramagnetic Resonance, W. A.
Benjamin, Inc., New York, 1966.
[57] S. Stoll, A. Schweiger, Journal of Magnetic Resonance 178 (2006) 42–55.
[58] D. Kovala-Demertzi, D. Skrzypek, B. Szymanska, A. Galani, M.A. Demertzis, Inorga-
nica Chimica Acta 358 (2005) 186–190.
Bruker DPX-400 with
a z-gradient BBO probe operating at 300.13 MHz and
400.13 MHz for 1H observe respectively. DOSY spectra were acquired using the Bruker
pulse programs, dstebpgp3s for 1 using sinusoidal gradients with durations between
1.25 and 3.5 ms. The gradient strength was varied between 2% and 95% in 16–32 square
spaced increments for 1. Diffusion times of 14 to 20 ms were used for 1. DOSY spectra
were processed using the Bruker Topspin software with exponential line fitting. X-
band ESR Spectra were recorded at X-band (9.5 GHz) using a Bruker EMX ESR