measurements and the HZB for financing the travel costs to
BESSY II.
Notes and references
z Crystal data for 1: C50H32NO15Zn4, M = 1148.25, hexagonal, a =
41.459(6), c = 17.561(4) A, V = 26140(7) A3, T = 293 K, space group
P63, Z = 6, 80 884 reflections measured, 28 147 unique (Rint =
0.0501). The final R1 was 0.0532 and wR2 was 0.1181 (all data). 2:
C54H30NO15Zn4, M = 1194.27, hexagonal, a = 41.414(6), c =
17.637(3) A, V = 26197(7) A3, T = 293 K, space group P63, Z =
6, 83 244 reflections measured, 28 628 unique (Rint = 0.0354). The final
R1 was 0.0533 and wR2 was 0.1115 (all data).
CCDC 831931 and CCDC 831930 contain the supplementary
crystallographic data for 1 and 2, respectively.
1 (a) Metal–Organic Frameworks: Design and Application, ed.
L. MacGillivray, Wiley, New Jersey, 2010; (b) S. Kaskel, Hand-
book of Porous Solids, 2002, 2, 1190.
2 (a) S. T. Meek, J. A. Greathouse and M. D. Allendorf, Adv.
Mater., 2011, 23, 249; (b) A. Corma, H. Garcia and F. X.
´
L. Xamena, Chem. Rev., 2010, 110, 4606; (c) G. Ferey, Stud. Surf.
Sci. Catal., 2007, 170A, 66; (d) U. Mueller, M. M. Schubert and
O. M. Yaghi, Handb. Heterog. Catal., 2008, 1, 247;
(e) M. Heitbaum, F. Glorius and I. Escher, Angew. Chem., Int.
Ed., 2006, 45, 4732; (f) W. Lin, Top. Catal., 2010, 53, 869.
Fig. 2 Chromatogram of 1-phenylethanol enantiomers using Bn-
ChirUMCM-1.
and 1-phenylethanol, as a representative of a chiral aromatic
alcohol, were tested. Both showed a significant selective
interaction with the chiral column compared to the non-
modified column (see Table S2, ESIw).
With 1-phenylethanol as an analyte a much stronger inter-
action with the chiral selector was observed than with 2-butanol.
Furthermore, with the 1-phenylethanol enantiomers enantio-
selective interactions with the chiral selector can be found
(see Table S2, ESIw). Fig. 2 depicts the chromatograms of the
pure 1-phenylethanol enantiomers measured on the chirally
modified Bn-ChirUMCM-1 column (for results on the unmodified
UMCM-1 see Fig. S21, ESIw). The selectivity a and the
resolution RS for the enantiomer separation can be calculated
as 1.6 and 0.65, respectively. The resolution of less than 1
indicates a significant overlap of the peaks, which is due to
their strong tailing. For further optimization of the separation
efficiency, the length of the column must be adapted and/or a
gradient elution is necessary.
3 (a) K. Gedrich, M. Heitbaum, A. Notzon, I. Senkovska,
R. Frohlich, J. Getzschmann, U. Mueller, F. Glorius and
¨
S. Kaskel, Chem.–Eur. J., 2011, 17, 2099; (b) J. P. Zhang,
X. C. Huang and X. M. Chen, Chem. Soc. Rev., 2009, 38, 2385;
(c) R. Grunker, I. Senkovska, R. Biedermann, N. Klein,
A. Klausch, I. A. Baburin, U. Mueller and S. Kaskel, Eur. J.
Inorg. Chem., 2010, 3835.
4 (a) J. W. Yoon, S. H. Jhung, Y. K. Hwang, S. M. Humphrey,
P. T. Wood and J. S. Chang, Adv. Mater., 2007, 19, 1830;
(b) B. Chen, C. Liang, J. Yang, D. S. Contreras, Y. L. Clancy,
E. B. Lobkovsky, O. M. Yaghi and S. Dai, Angew. Chem., 2006,
118, 1418 (Angew. Chem., Int. Ed., 2006, 45, 1390); (c) V. Finsy,
H. Verelst, L. Alaerts, D. De Vos, P. A. Jacobs, G. V. Baron and J.
F. M. Denayer, J. Am. Chem. Soc., 2008, 130, 7110; (d) V. Finsy,
S. Calero, E. Garcıa-perez, P. J. Merkling, G. Vedts, D. E. De Vos,
´ ´
G. V. Baron and J. F. M. Denayer, Phys. Chem. Chem. Phys.,
2009, 11, 3515.
5 (a) L. Alaerts, C. E. A. Kirschhock, M. Maes, M. A. van der Veen,
V. Finsy, A. Depla, J. A. Martens, G. V. Baron, P. A. Jacobs, J. F.
M. Denayer and D. E. De Vos, Angew. Chem., 2007, 119, 4371
(Angew. Chem., Int. Ed., 2007, 46, 4293); (b) L. Alaerts, M. Maes,
P. A. Jacobs, J. F. M. Denayer and D. E. De Vos, Phys. Chem.
Chem. Phys., 2008, 10, 2979; (c) L. Alaerts, M. Maes, L. Giebeler,
P. A. Jacobs, J. A. Martens, J. F. M. Denayer, C. E. A. Kirschhock
and D. E. De Vos, J. Am. Chem. Soc., 2008, 130, 14170;
(d) A. L. Nuzhdin, D. N. Dybtsev, K. P. Bryliakov, E. P. Talsi
and V. P. Fedin, J. Am. Chem. Soc., 2007, 129, 12958;
(e) R. Ahmad, A. G. Wong-Foy and A. J. Matzger, Langmuir,
2009, 25, 11977.
6 (a) S. Han, Y. We, C. Valente, I. Lagzi, J. J. Gassensmith,
A. Coskun, J. F. Stoddart and B. A. Grzybowski, J. Am. Chem.
Soc., 2010, 132, 16358; (b) R. Ahmad, A. G. Wong-Foy and
A. J. Matzger, Langmuir, 2009, 25, 11977; (c) R. Ameloot,
A. Liekens, L. Alaerts, M. Maes, A. Galarneau, B. Coq,
G. Desmet, B. F. Sels, J. F. M. Denayer and D. E. De Vos, Eur.
J. Inorg. Chem., 2010, 3735; (d) H. L. Jiang, Y. Tatsu, Z. H. Lu and
Q. Xu, J. Am. Chem. Soc., 2010, 132, 5586.
7 G. Nickerl, A. Henschel, R. Grunker, K. Gedrich and S. Kaskel,
¨
Chem. Ing. Tech., 2011, 83, 90.
8 K. Gedrich, I. Senkovska, I. A. Baburin, U. Mueller, O. Trapp and
S. Kaskel, Inorg. Chem., 2010, 49, 4440.
9 (a) Z. Wang, K. K. Tanabe and S. M. Cohen, Inorg. Chem., 2009,
48, 296; (b) Z. Q. Wang and S. M. Cohen, Chem. Soc. Rev., 2009,
38, 1315; (c) S. M. Cohen, Chem. Sci., 2010, 1, 32.
10 K. Koh, A. G. Wong-Foy and A. J. Matzger, Angew. Chem., Int.
Ed., 2008, 47, 677.
11 Y. Gnas and F. Glorius, Synthesis, 2006, 1899.
12 A. L. Spek, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2009,
65, 148.
The use of 1-phenylethylamine as a 1-phenylethanol analogue
with an amino-function instead of the hydroxyl-function was
not successful, because the interactions were too strong
already even with the unmodified UMCM-1. The same holds
true for the amino acid D,L-alanine.
After around 200 injections the column material was
characterized by nitrogen adsorption and PXRD. No significant
changes were detected.
In summary, we have prepared and characterized two
porous chiral metal–organic frameworks (iPr-ChirUMCM-1
and Bn-ChirUMCM-1). Bn-ChirUMCM-1 was successfully
used as the stationary phase for HPLC applications. Namely,
1-phenylethanol as analyte showed both selective and enantio-
selective interactions with the MOF. The potential for enantio-
separation can be clearly seen from the selectivity, which is
high enough to reach enantiomer separation. However, the
resolution was too low to reach peak separation under the
chosen conditions. The results presented herein are promising
for the proof of principle and in the future these valuable chiral
materials should be useful for the separation of enantiomers in
the liquid phase.
The authors thank the German Research Foundation with-
in the priority program ‘‘Porous MOFs’’ (SPP 1362) for
financial support. The authors are grateful to the BESSY staff
(Dr U. Mueller, Dr M. S. Weiss) for support during the
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 12089–12091 12091