Journal of the American Chemical Society
Communication
intense π-based LLCT bands are seen between 325 and 360 nm
(exptl ∼340). For 3, three distinct bands are predicted in the
visible range at λmax = 440, 490, and 620 nm, in excellent
agreement with the experimental spectrum of 3. These
transitions are assigned as follows: 440 nm, dxz/dyz to 4pz
spectroscopic studies. This work was made possible by support
from the University of Minnesota. Acknowledgment is made to
the donors of the ACS Petroleum Research Fund (Grant
50395-DNI3 to C.C.L.) and to the U.S. DOE (Grant DE-
SC002183 to L.G.) for partial support of this research.
2
2
2
(LUMO); 490 nm, (dz + Lπ) to 4pz; 620 nm, dxy/dx −y to 4pz.
2
REFERENCES
The more pure dz to 4pz transition is predicted at 360 nm,
■
appearing as a shoulder on the LLCT band in Figure 4. Because
several transitions involve the LUMO, the ligand-field energies
(1) (a) Tauster, S. J.; Fung, S. C.; Baker, R. T. K.; Horsley, J. A.
Science 1981, 211, 1121. (b) Tsakoumis, N. E.; Rønning, M.; Borg, Ø.;
Rytter, E.; Holmen, A. Catal. Today 2010, 154, 162.
2
can be extracted: Δ(dz , dxz/dyz) = 0.66 eV; Δ(dxz/dyz, dxy/
(2) (a) Farmer, J. A.; Campbell, C. T. Science 2010, 329, 933.
(b) Kwak, J. H.; Hu, J.; Mei, D.; Yi, C.-W.; Kim, D. H.; Peden, C. H.
F.; Allard, L. F.; Szanyi, J. Science 2009, 325, 1670.
(3) Studies proposing metal−support interactions between metal and
aluminum centers: (a) Venezia, A. M.; Bertoncello, R.; Deganello, G.
Surf. Interface Anal. 1995, 23, 239. (b) Kunimori, K.; Ikeda, Y.; Soma,
M.; Uchijima, T. J. Catal. 1983, 79, 185. (c) Bhatia, S.; Bakhshi, N. N.;
Mathews, J. F. Can. J. Chem. Eng. 1978, 56, 575.
(4) (a) Braunschweig, H.; Dewhurst, R. D.; Schneider, A. Chem. Rev.
2010, 110, 3924. (b) Braunschweig, H.; Dewhurst, R. D. Dalton Trans.
2011, 40, 549.
(5) (a) Burlitch, J. M.; Leonowicz, M. E.; Petersen, R. B.; Hughes, R.
E. Inorg. Chem. 1979, 18, 1097. (b) Golden, J. T.; Peterson, T. H.;
Holland, P. L.; Bergman, R. G.; Andersen, R. A. J. Am. Chem. Soc.
1998, 120, 223. (c) Braunschweig, H.; Gruss, K.; Radacki, K. Angew.
Chem., Int. Ed. 2007, 46, 7782. (d) Bauer, J.; Braunschweig, H.;
Brenner, P.; Kraft, K.; Radacki, K.; Schwab, K. Chem.Eur. J. 2010,
16, 11985.
2
2
2
2
d
x − y ) = 0.79 eV; Δ(dxy/dx − y , 4pz) = 2.0 eV.
Although the TD-DFT results for Co complex 4(N2) and Fe
complex 5(N2) are complicated by MO mixing in the ground
and excited states, some important information can be gleaned.
Excitations to the metal pz orbital occur near 300 nm (see the
Supporting Information for details). Far-visible bands arising
from metal d → π*(N2) transitions occur at 400 and 431 nm
2
for 4(N2) and 362 nm for 5(N2). Additional dz (Fe) → π*(N2)
peaks are red-shifted to 432 and 434 nm. Metal d−d transitions
into the singly occupied MO (SOMO) account for the
remaining bands at 557, 990, and 1133 nm for 4(N2) and at
592 and 1113 nm for 5(N2). There are two noteworthy
discrepancies between the calculated and experimental spectra.
The NIR bands for Co are predicted to have similar intensities
as the visible bands, yet experimentally only a very weak signal
is observed at 1400 nm (ε < 100 L mol−1 cm−1). More
troubling, the far-visible bands for 5(N2) are predicted to have
relatively low intensity, but experimentally, the 411 nm band is
remarkably intense (ε = 1.5 × 104 L mol−1 cm−1). In the case of
the Fe complex, we have made the simplifying assumption that
the N2-bridged species {5}2(μ-N2) is a minor species in
solution relative to 5(N2). If this is not the case, then additional
transitions are expected for {5}2(μ-N2), and they could possibly
account for the intense band at 411 nm. The solution
equilibrium between 5(N2) and {5}2(μ-N2) is currently under
study.
(6) (a) Amgoune, A.; Bourissou, D. Chem. Commun. 2011, 47, 859.
(b) Parkin, G. Organometallics 2006, 25, 4744. (c) Hill, A. F.
Organometallics 2006, 25, 4741.
(7) (a) Hill, A. F.; Owen, G. R.; White, A. J. P.; Williams, D. J. Angew.
Chem., Int. Ed. 1999, 38, 2759. (b) Mihalcik, D. J.; White, J. L.; Tanski,
J. M.; Zakharov, L. N.; Yap, G. P. A.; Incarvito, C. D.; Rheingold, A. L.;
Rabinovich, D. Dalton Trans. 2004, 1626. (c) Pang, K.; Tanski, J. M.;
Parkin, G. Chem. Commun. 2008, 1008. (d) Bontemps, S.; Bouhadir,
G.; Gu, W.; Mercy, M.; Chen, C.-H.; Foxman, B. M.; Maron, L.;
Ozerov, O. V.; Bourissou, D. Angew. Chem. 2008, 47, 1503.
(e) Sircoglou, M.; Bontemps, S. b.; Bouhadir, G.; Saffon, N.;
Miqueu, K.; Gu, W.; Mercy, M.; Chen, C.-H.; Foxman, B. M.;
Maron, L.; Ozerov, O. V.; Bourissou, D. J. Am. Chem. Soc. 2008, 130,
16729.
(8) (a) Sircoglou, M.; Mercy, M.; Saffon, N.; Coppel, Y.; Bouhadir,
G.; Maron, L.; Bourissou, D. Angew. Chem., Int. Ed. 2009, 48, 3454.
(b) Derrah, E. J.; Sircoglou, M.; Mercy, M.; Ladeira, S.; Bouhadir, G.;
Miqueu, K.; Maron, L.; Bourissou, D. Organometallics 2011, 30, 657.
(9) Sircoglou, M.; Bouhadir, G.; Saffon, N.; Miqueu, K.; Bourissou,
D. Organometallics 2008, 27, 1675.
While we have varied the late metal to probe the chemical
nature of M→Al bonds, another intriguing and complementary
study would be to probe the effect of the supporting center on
an invariant late metal center. Future efforts are focused on
using the dinucleating proligand 1 to access novel chemical
bonds between two main-group and/or transition-metal
elements.
ASSOCIATED CONTENT
(10) Jones, M. B.; MacBeth, C. E. Inorg. Chem. 2007, 46, 8117.
(11) Su, W.; Kim, Y.; Ellern, A.; Guzei, I. A.; Verkade, J. G. J. Am.
Chem. Soc. 2006, 128, 13727.
(12) Cordero, B.; Gomez, V.; Platero-Prats, A. E.; Reves, M.;
Echeverria, J.; Cremades, E.; Barragan, F.; Alvarez, S. Dalton Trans.
2008, 2832.
■
S
* Supporting Information
Experimental procedures, X-ray crystallographic data (CIF),
computational details, and physical data. This material is
(13) MacKay, B. A.; Fryzuk, M. D. Chem. Rev. 2004, 104, 385.
(14) Whited, M. T.; Mankad, N. P.; Lee, Y.; Oblad, P. F.; Peters, J. C.
Inorg. Chem. 2009, 48, 2507.
(15) Moret, M.-E.; Peters, J. C. Angew. Chem., Int. Ed. 2011, 50, 2063.
(16) Fryzuk, M. D.; Haddad, T. S.; Mylvaganam, M.; McConville, D.
H.; Rettig, S. J. J. Am. Chem. Soc. 1993, 115, 2782.
AUTHOR INFORMATION
■
Corresponding Author
ACKNOWLEDGMENTS
(17) (a) Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157.
(b) Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125, No. 194101.
■
Aubrey (Sperier) Arenivas and Abbas Mulla are acknowledged
for their preliminary experimental and computational con-
tributions, respectively. S.L. thanks Zahid Ertem for computa-
tional advice. We thank Professor Dave Blank for the generous
use of his Vis−NIR spectrophotometer. Computing support
and resources were provided by the Minnesota Supercomput-
ing Institute. Dr. Letitia Yao assisted with the NMR
20727
dx.doi.org/10.1021/ja2099744 | J. Am. Chem.Soc. 2011, 133, 20724−20727