Journal of the American Chemical Society
ARTICLE
(9) De Greef, T. F. A.; Smulders, M. M. J.; Wolffs, M.; Schenning,
A. P. H. J.; Sijbesma, R. P.; Meijer, E. W. Chem. Rev. 2009, 109, 5687–5754.
(10) Misuraca, M. C.; Grecu, T.; Freixa, Z.; Garavini, V.; Hunter,
C. A.; van Leeuwen, P. W. N. M.; Segarra-Maset, M. D.; Turega, S. M.
J. Org. Chem. 2011, 76, 2723–2732.
(11) (a) Cram, D. J.; Lein, G. M.; Kaneda, T.; Helgeson, R. C.;
Knobler, C. B.; Maverick, E.; Trueblood, K. N. J. Am. Chem. Soc. 1981,
103, 6822–6232. (b) Cram, D. J. Angew. Chem., Int. Ed. Engl. 1986, 25,
1039–1057.
(12) (a) van Eerden, J.; Grootenhuis, P. D. J.; Dijkstra, P. J.;
van Staveren, C. J.; Harkema, S.; Reinhoudt, D. N. J. Org. Chem. 1986,
51, 3918–3920. (b) Hua, Y.; Ramabhadran, R. O.; Karty, J. A.;
Raghavachari, K.; Flood, A. H. Chem. Commun. 2011, 47, 5979–5981.
(13) Zhong, Z.;Li, X.;Zhao, Y. J. Am. Chem. Soc. 2011, 133, 8862–8865.
(14) (a) Hancock, R. D.; Marsicano, F. J. Chem. Soc., Dalton Trans.
1976, 1096–1098. (b) Meyers, R. T. Inorg. Chem. 1978, 17, 952–958.
(15) Watson, J. L.; Whitesides, G. M. J. Org. Chem. 1993, 58, 642–647.
(16) Anderson, H. L. Inorg. Chem. 1994, 33, 972–981.
(30) KQ is the binding constant of quinuclidine per porphyrin unit; it
is not a microscopic binding constant. KQ is measured for a porphyrin
monomer, l-P01, in the case of the linear oligomers, because the longer
linear oligomers aggregate in the absence of pyridine even at micromolar
concentrations. KQ can be measured directly for c-P6 because this cyclic
oligomer does not aggregate significantly at low concentrations. The
difference in KQ of about a factor of 3 appears to be a consequence of the
inductive effect of the alkoxy groups used to solubilize the linear
oligomers; a similar difference is also seen between the K1 values for
the two types of oligomers.
(31) Winters, M. U.; K€arnbratt, J.; Eng, M.; Wilson, C. J.; Anderson,
H. L.; Albinsson, B. J. Phys. Chem. C 2007, 111, 7192–7199.
(32) Sprafke, J. K.; Stranks, S. D.; Warner, J. H.; Nicholas, R. J.;
Anderson, H. L. Angew. Chem., Int. Ed. 2011, 50, 2313–2316.
(33) (a) Benson, S. W. J. Am. Chem. Soc. 1958, 80, 5151–5154.
(b) Bailey, W. F.; Monahen, A. S. J. Chem. Educ. 1978, 55, 489–493.
(34) Ercolani, G.; Piguet, C.; Borkovec, M.; Hamacek, J. J. Phys.
Chem. B 2007, 111, 12195–12203.
(17) Anderson, H. L.; Anderson, S.; Sanders, J. K. M. J. Chem. Soc.,
Perkin Trans. 1 1995, 2231–2245.
(35) Note that a chelate effect requires more than one point of
interaction; no effective molarity exists for N = 1, and eqs 7ꢀ9 are not
defined for EM1.
(36) Lovett, J. E.; Hoffmann, M.; Cnossen, A.; Shutter, A. T. J.;
Hogben, H. J.; Warren, J. E.; Pascu, S. I.; Kay, C. W. M.; Timmel, C. R.;
Anderson, H. L. J. Am. Chem. Soc. 2009, 131, 13852–13859.
(37) Saywell, A; Sprafke, J. K.; Esdaile, L. J.; Britton, A. J.; Rienzo, A.;
Anderson, H. L.; O’Shea, J. N.; Beton, P. H. Angew. Chem., Int. Ed. 2010,
49, 9136–9139.
(18) (a) Hunter, C. A.; Misuraca, M. C.; Turega, S. M. J. Am. Chem.
Soc. 2011, 133, 582–594. (b) Hunter, C. A.; Ihekwaba, N.; Misuraca,
M. C.; Segarra-Maset, M. D.; Turega, S. M. Chem. Commun. 2009,
3964–3966. (c) Chekmeneva, E.; Hunter, C. A.; Packer, M. J.; Turega
J. Am. Chem. Soc. 2008, 130, 17718–17725. (d) Bernad, P. L.; Guerin, A. J.;
Haycock, R. A.; Heath, S. L.; Hunter, C. A.; Raposo, C.; Rotger, C.; Sarson,
L. D.; Sutton, L. R. New J. Chem. 2008, 32, 525–532.
ꢀ
(19) (a) Gonzꢀalez-Alvarez, A.; Frontera, A.; Ballester, P. J. Phys.
(38) (a) Ercolani, G. Org. Lett. 2005, 7, 803–805. (b) Shinkai, S.;
Sugasaki, A.; Ikeda, M.; Takeuchi, M. Acc. Chem. Res. 2001, 34, 494–503.
(c) Wilson, G. S.; Anderson, H. L. Chem. Commun. 1999, 1539–1540.
Chem. B 2009, 115, 11479–11489. (b) Ballester, P.; Oliva, A. I.; Costa, A.;
Deyꢁa, P. M.; Frontera, A.; Gomila, R. M.; Hunter, C. A. J. Am. Chem. Soc.
2006, 128, 5560–5569.
(20) Oshovsky, G. V.; Reinhoudt, D. N.; Verboom, W. J. Org. Chem.
2006, 71, 7441–7448.
(21) Ikeda, C.; Tanaka, Y.; Fujihara, T.; Ishii, Y.; Ushiyama, T.;
Yamamoto, K.; Yoshioka, N.; Inoue, H. Inorg. Chem. 2001, 40, 3395–3405.
(22) Kassianidis, E.; Pearson, R. J.; Philp, D. Chem.—Eur. J. 2006, 12,
8798–8812.
(23) Hammerstein, A. F.; Shin, S.-H.; Bayley, H. Angew. Chem., Int.
Ed. 2010, 49, 5085–5090.
(24) In this paper we consider only thermodynamic effective mola-
rities for equilibrium processes. It is well known that kinetic effective
molarities can have higher values; e.g., see: Cacciapaglia, R.; Di Stefano, S.;
Mandolini, L. Acc. Chem. Res. 2004, 37, 113–122.
(25) Hoffmann, M.; K€arnbratt, J.; Chang, M.-H.; Herz, L. M.;
Albinsson, B.; Anderson, H. L. Angew. Chem., Int. Ed. 2008, 47, 4993–4996.
(26) The crystal structure of c-P6 T6 shows that the c-P6 nanoring
3
is too large for a perfect fit to the T6 ligand by a factor of 2.5%. This
crystal structure also shows that the geometry of the Znꢀpyridine
coordination sphere in c-P6 T6 is normal, with no signs of strain-
3
induced distortion; see: Sprafke, J. K.; et al. J. Am. Chem. Soc. 2011,
133, 17262–17273.
(27) In a preliminary study25 we determined the stability of the
complex c-P06 T6 with octyloxy side chains and reported Kf = 6.6 ꢂ
3
1038 M, whereas here we report Kf = 1.2 ꢂ 1036 M for c-P6 T6 with tert-
3
butyl side chains. The difference between these values originates largely
from the difference in side chains. The statistically corrected geome-
trically averaged effective molarity determined for c-P06 T6 was log EM6 =
3
2.0, which is similar to the value of log EM6 = 2.1 reported here for
c-P6 T6.
3
(28) (a) Dilthey, W.; Quint, F. J. Prakt. Chem. 1930, 128, 139–149.
(b) Dilthey, W.; Hurtig Chem. Ber. 1934, 67B, 2004–2007. (c) Fieser,
L. F. Organic Syntheses; Wiley & Sons: New York, 1973; Collect. Vol. V,
p 604. (d) Shen, X.; Ho, D. M.; Pascal, R. A. J. Am. Chem. Soc. 2004,
126, 5798–5805. (e) Sauriat-Dorizon, H.; Maris, T.; Wuest, J. D. J. Org.
Chem. 2003, 68, 240–246.
(29) Drobizhev, M.; Stepanenko, Y.; Rebane, A.; Wilson, C. J.;
Screen, T. E. O.; Anderson, H. L. J. Am. Chem. Soc. 2006, 128,
12432–12433.
20969
dx.doi.org/10.1021/ja209254r |J. Am. Chem. Soc. 2011, 133, 20962–20969