212
S. M. Kobelev et al. / Tetrahedron Letters 53 (2012) 210–213
2. Martynov, A. G.; Gorbunova, Y. G. Inorg. Chim. Acta 2007, 360, 122–130.
3. Murillo, O.; Watanabe, S.; Nakano, A.; Gokel, G. W. J. Am. Chem. Soc. 1995, 117,
7665–7679.
4. Dietrich, B.; Lehn, J.-M.; Sauvage, J.-P.; Blanzat, J. Tetrahedron 1973, 29, 1629–
1645.
5. (a) Bencini, A.; Bianchi, A.; Bazzicalupi, C.; Ciampolini, M.; Dapporto, P.; Fusi, V.;
Micheloni, M.; Nardi, N.; Paoli, P.; Valtancoli, B. J. Chem. Soc., Perkin Trans. 2
1993, 715–720; (b) Bazzicalupi, C.; Bencini, A.; Bianchi, A.; Fusi, V.; Paoletti, P.;
Valtancoli, B. J. Chem. Soc., Perkin Trans. 2 1994, 815–820; (c) Bazzicalupi, C.;
Bencini, A.; Bianchi, A.; Fusi, V.; Mazzanti, L.; Paoletti, P.; Valtancoli, B.; Golub,
G.; Cohen, H.; Meyerstein, D. J. Chem. Soc., Dalton Trans. 1995, 2377–2384; (d)
Bencini, A.; Fusi, V.; Giorgi, C.; Micheloni, M.; Nardi, N.; Valtancoli, B. J. Chem.
Soc., Perkin Trans. 2 1996, 2297–2302; (e) Dapporto, P.; Formica, M.; Fusi, V.;
Giorgi, L.; Micheloni, M.; Pontellini, R.; Paoli, P.; Rossi, P. Eur. J. Inorg. Chem.
2001, 1763–1774.
N
NH
N
HN
n
O
N
O
n
N
HN
NH
O
N
NH
N
O
O
O
n = 1: 12, 10%
n = 2: 13, 30%
HN
Br
n = 1, 2
+
Pd(dba)2/DavePhos
tBuONa, 1,4-dioxane
O
Br
6. (a) Krakowiak, K. E.; Bradshaw, J. S.; Kou, X.; Dalley, N. K. J. Heterocycl. Chem.
1995, 32, 931–935; (b) Lachkar, M.; Guilard, R.; Atmani, A.; De Cian, A.; Fischer,
J.; Weiss, R. Inorg. Chem. 1998, 37, 1575–1584; (c) Krakowiak, K. E. J. Incl. Phen.
Mol. Recogn. 1997, 29, 283–288.
7. (a) Chae, M. K.; Lee, J. I.; Kim, N.-K.; Jeong, K.-S. Tetrahedron Lett. 2007, 48,
6624–6627; (b) Fages, F.; Desvergne, J.-P.; Bouas-Laurent, H.; Marsau, P.; Lehn,
J.-M.; Kotzyba-Hibert, F.; Albrecht-Gary, A.-M.; Al-Joubbeh, M. J. Am. Chem. Soc.
1989, 111, 8672–8680.
8. (a) He, H.; Mortellaro, M. A.; Leiner, M. J. P.; Fraatz, R. J.; Tusa, J. K. J. Am. Chem.
Soc. 2003, 125, 1468–1469; (b) Gouloumis, A.; Lawson, R. C.; Vazquez, P.;
Echegoyen, L.; Torres, T. Tetrahedron 2002, 58, 961–966.
9. Lehn, J.-M.; Simon, J.; Moradpour, A. Helv. Chim. Acta 1978, 61, 2407–2418.
10. (a) Brandes, S.; Denat, F.; Lacour, S.; Rabiet, F.; Barbette, F.; Pullumbi, P.;
Guilard, R. Eur. J. Org. Chem. 1998, 2349–2360; (b) Develay, S.; Tripier, R.;
Chuburu, F.; Le Baccon, M.; Handel, H. Eur. J. Org. Chem. 2003, 3047–3050.
11. (a) Ingham, A.; Rodopoulos, M.; Coulter, K.; Rodopoulos, T.; Subramanian, S.;
McAuley, A. Coord. Chem. Rev. 2002, 233–234, 255–271; (b) Hubin, T. J. Coord.
Chem. Rev. 2003, 241, 27–46.
2
N
O
N
NH
N
O
HN
NMe2
Cy2P
HN
n
DavePhos =
N
O
n
O
HN
n = 1: 14, 22%
n = 2: 15, 29%
O
Scheme 3. Synthesis of cylindrical cryptands 12, 13 and trimacrocycles 14 and 15.
12. Averin, A. D.; Shukhaev, A. V.; Buryak, A. K.; Denat, F.; Guilard, R.; Beletskaya, I.
P. Tetrahedron Lett. 2008, 49, 3950–3954.
13. All reactions were run under dry argon using MeCN distilled over CaH2 and 1,4-
dioxane distilled over Na. After completion of the reactions (1H NMR) the
mixture was evaporated in vacuo and chromatographed on silica gel using a
sequence of eluents: CH2Cl2, CH2Cl2–MeOH 50:1–3:1, CH2Cl2/MeOH/NH3(aq)
100:20:1–10:4:1. For the synthesis of macrobicycle 4 see Ref. 12.
32,37-Bis(3-bromobenzyl)-12,15,18-trioxa-1,8,22,29,32,37-hexaazatetracyclo
[27.5.5.13,7.123,27]hentetraconta-3(41),4,6,23(40),24,26-hexaene
(5)
was
6
11
12, 13
14, 15
synthesized from macrobicycle 4 (130 mg, 0.23 mmol) and 3-bromobenzyl
bromide (115 mg, 0.46 mmol) in MeCN (5 mL) in the presence of K2CO3 (95 mg,
0.69 mmol) at room temperature (reaction time 48 h). Eluent CH2Cl2–MeOH–
NH3(aq) 100:20:1. Yield 69 mg (33%). 1H NMR (400 MHz, CDCl3): d 1.85 (quin,
J = 6.1 Hz, 4H), 2.64–2.74 (m, 16H), 3.19 (q, J = 5.8 Hz, 4H), 3.38 (s, 4H), 3.41 (s,
4H), 3.57 (t, J = 6.0 Hz, 4H), 3.59–3.62 (m, 4H), 3.65–3.70 (m, 4H), 3.96 (t,
J = 5.4 Hz, 2H), 6.48 (d, J = 8.0 Hz, 2H), 6.60 (d, J = 7.3 Hz, 2H), 6.74 (s, 2H), 7.06
(t, J = 7.6 Hz, 2H), 7.11 (t, J = 7.8 Hz, 2H), 7.31 (d, J = 7.7 Hz, 2H), 7.36 (d,
J = 8.3 Hz, 2H), 7.52 (s, 2H); 13C NMR (100.6 MHz, CDCl3): d 29.1 (2C), 41.6 (2C),
52.5 (4C), 53.0 (4C), 59.2 (2C), 60.5 (2C), 69.6 (2C), 70.2 (2C), 70.6 (2C), 110.8
(2C), 113.2 (2C), 117.6 (2C), 122.1 (2C), 127.5 (2C), 128.7 (2C), 129.7 (4C), 131.7
(2C), 141.0 (2C), 142.6 (2C), 148.6 (2C); MALDI-TOF m/z 905.3271 [M+H]+;
calcd for C46H63Br2N6O3: 905.3328.
Figure 1. Structural types of macrotricycles 6 and 11–13 and trimacrocycles 14 and
15.
or diaza-18-crown-6 led directly to the corresponding cylindrical
cryptands 12 and 13 (Scheme 3). These reactions were catalyzed
with Pd(dba)2/DavePhos catalyst because BINAP was found to be
much less active in the arylation of secondary amino groups in aza-
crown ethers. The target compounds were obtained in 10% and 30%
yields, respectively. Such pronounced differences in the yields can
be explained by the different distances between the two reacting
nitrogen atoms of the diazacrown ethers. In both reactions
bis(diazacrown) derivatives 14 and 15 were isolated in comparable
yields (22% and 29%); these molecules are also of interest as they
contain isolated macrocycles with different binding properties.
In conclusion, we have elaborated approaches to three struc-
tural types of macrotricycles organized around the cyclen moiety.
The shapes of the synthesized macropolycycles 6 and 11–15 can
be outlined schematically as shown in Figure 1. Further work on
the synthesis of macrotricycles of these types bearing isomeric aro-
matic spacers and various oxadiamine linkers, which will alter the
sizes of certain cavities, is underway.
12,15,18,43,46,49-Hexaoxa-1,8,22,29,32,39,53,60-octaazaheptacyclo[30.30.
2.229,60.13,7.123,27.134,38.154,58]heptaconta-3(70),4,6,23(69),24,26,34(68),35,37,
54(67),55,57-dodecaene (6) was synthesized from compound
5 (130 mg,
0.14 mmol) and trioxadiamine (31 mg, 0.14 mmol), in the presence of
3
Pd(dba)2 (6.5 mg), BINAP (8 mg), tBuONa (40 mg, 0.42 mmol), in boiling
absolute 1,4-dioxane (6 mL, reflux time 24 h). Eluent CH2Cl2–MeOH 3:1.
Yield 45 mg (33%). 1H NMR (400 MHz, DMSO-d6): d 1.73 (quin, J = 6.2 Hz, 8H),
2.72–2.87 (m, 16H), 3.07 (t, J = 6.8 Hz, 8H), 3.38–3.48 (m, 16H), 3.50–3.55 (m,
16H), 5.27 (br s, 4H), 6.39 (d, J = 7.7 Hz, 4H), 6.51 (s, 4H), 6.53 (d, J = 8.3 Hz, 4H),
7.01 (t, J = 7.5 Hz, 4H); 13C NMR (100.6 MHz, DMSO-d6): d 28.8 (4C), 40.1 (4C),
50.0 (br s, 8C), 58.9 (4C), 68.1 (4C), 69.2 (4C), 69.5 (4C), 112.0 (4C), 113.0 (4C),
117.2 (4C), 128.3 (4C), 135.7 (4C), 148.8 (4C); MALDI-TOF m/z 965.84 [M+H]+;
calcd for C56H85N8O6: 965.66.
Di-tert-butyl 4,10-bis(3-bromobenzyl)-1,4,7,10-tetraazacyclo-dodecane-1,7-
dicarboxylate (7) was synthesized from compound 2 (510 mg, 1 mmol) and
Boc2O (545 mg, 2.5 mmol), in CH2Cl2 (1.5 mL), at room temperature. The
reaction was complete in 24 h. Yield 694 mg (98%). 1H NMR (400 MHz, CDCl3):
d 1.27 (s, 18H), 2.61 (br s, 8H), 3.29 (br s, 4H), 3.40 (br s, 4H), 3.52 (s, 4H), 7.12
(br t, Jobs = 6.3 Hz, 2H), 7.17 (br s, 2H), 7.31 (br d, Jobs = 6.5 Hz, 2H), 7.44 (br s,
2H); 13C NMR (100.6 MHz, CDCl3): d 28.2 (6C), 45.9 (4C), 54.7 (4C), 59.1 (2C),
79.5 (2C), 122.2 (2C), 127.7 (2C), 129.6 (2C), 130.0 (2C), 132.2 (2C), 141.5 (2C),
155.6 (2C); MALDI-TOF m/z 709.1920 [M+H]+; calcd for C32H47Br2N4O4:
709.1964.
Acknowledgments
This work was supported by RFBR Grant 09-03-00735 and by
the Russian Academy of Sciences program P-8 ‘Development of
methods for the synthesis of new chemicals and creation of new
materials’’.
Di-tert-butyl 12,15,18-trioxa-1,8,22,29,32,37-hexaazatetra-cyclo[27.5.5.13,7.1
23,27]hentetraconta-3(41),4,6,23(40),24,26-hexaene-32,37-dicarboxylate
(8)
was synthesized from compound 7 (734 mg, 1.03 mmol), trioxadiamine 3
(220 mg, 1 mmol), in the presence of Pd(dba)2 (92 mg), BINAP (112 mg),
tBuONa (290 mg, 3.02 mmol), in boiling absolute 1,4-dioxane (50 mL, reflux
time 24 h). Eluent CH2Cl2–MeOH 25:1. Yield 294 mg (33%). 1H NMR (400 MHz,
CDCl3, 328 K): d 1.35 (s, 18H), 1.84 (quin, J = 5.5 Hz, 4H), 2.78 (br s, 8H), 3.23 (t,
J = 6.0 Hz, 4H), 3.36 (br s, 8H), 3.54 (br s, 4H), 3.55–3.60 (m, 8H), 3.65–3.68 (m,
References and notes
1. (a) Lehn, J.-M. Pure Appl. Chem. 1980, 52, 2441–2459; (b) Quici, S.; Manfredi, A.;
Raimondi, L.; Sironi, A. J. Org. Chem. 1995, 60, 6379–6388.