Inorganic Chemistry
Communication
centers. We are currently expanding upon these initial findings
in the context of small-molecule activation.
ASSOCIATED CONTENT
■
S
* Supporting Information
X-ray crystallographic files (CIFs), full experimental details,
computational details and data, H and 19F NMR spectra, and
1
magnetism data. This material is available free of charge via the
AUTHOR INFORMATION
Corresponding Author
■
ACKNOWLEDGMENTS
■
E.J.S. acknowledges the University of Pennsylvania for financial
support. We thank the NSF for support of the X-ray
diffractometer (Grant CHE-0840438) and computing cluster
(Grant CHE-0131132). E.J.S. and J.M.K. are grateful for partial
support from the NSF MRSEC program (Grant DMR-
0520020). We thank Johnson Matthey for donation of the
palladium reagents, Prof. Donald H. Berry (Penn) and Dr.
Thibault Cantat (CEA-Saclay) for assistance with the
calculations, and Prof. Christopher R. Graves (Albright
College) for helpful discussions.
Figure 3. Variable-temperature 19F NMR data for complexes 3 (top)
and 4 (bottom). Lines are provided as a guide for the eye. Dotted lines
indicate the region around coalescence.
unsymmetric ligand environment. Below room temperature,
multiple decoalescence processes are evident in the 19F NMR
spectrum (Figure S16 in the Supporting Information). The
appearance of multiple decoalescence processes in the variable-
temperature NMR experiment suggests that the molecule
adopts multiple low-energy conformations that readily
equilibrate. These conformations likely correspond to inter-
actions between the ArF rings and the pyridine ligands. To
further investigate the role of interarene interactions in 3, we
prepared a second Lewis base adduct of 3.
REFERENCES
■
(1) Shook, R. L.; Borovik, A. S. Inorg. Chem. 2010, 49, 3646.
(2) Lam, O. P.; Anthon, C.; Meyer, K. Dalton Trans. 2009, 9677.
(3) Cotton, S. Lanthanide and Actinide Chemistry, 2nd ed.; Wiley:
New York, 20067.
(4) Balland, V.; Hureau, C.; Savea
2010, 107, 17113.
(5) Monreal, M. J.; Diaconescu, P. L. Organometallics 2008, 27, 1702.
(6) Ekstrom, A. Inorg. Chem. 1974, 13, 2237.
(7) Castro-Rodriguez, I.; Nakai, H.; Zakharov, L. N.; Rheingold, A.
L.; Meyer, K. Science 2004, 305, 1757.
(8) Casely, I. J.; Liddle, S. T.; Blake, A. J.; Wilson, C.; Arnold, P. L.
Chem. Commun. 2007, 5037.
(9) (a) Wampler, K. M.; Schrock, R. R. Inorg. Chem. 2007, 46, 8463.
(b) Harman, W. H.; Chang, C. J. J. Am. Chem. Soc. 2007, 129, 15128.
(c) Piro, N. A.; Lichterman, M. F.; Harman, W. H.; Chang, C. J. J. Am.
Chem. Soc. 2011, 133, 2108. (d) Sazama, G. T.; Betley, T. A.
Organometallics 2011, 30, 4315.
(10) Harman, W. H.; Harris, T. D.; Freedman, D. E.; Fong, H.;
Chang, A.; Rinehart, J. D.; Ozarowski, A.; Sougrati, M. T.; Grandjean,
F.; Long, G. J.; Long, J. R.; Chang, C. J. J. Am. Chem. Soc. 2010, 132,
18115.
(11) Freedman, D. E.; Harman, W. H.; Harris, T. D.; Long, G. J.;
Chang, C. J.; Long, J. R. J. Am. Chem. Soc. 2010, 132, 1224.
(12) Although commonly referred to as “π stacking”, interactions in
these molecules likely incorporate coupling of the dipole moments of
these aryl fragments.
(13) Shi, Y.; Cao, C.; Odom, A. L. Inorg. Chem. 2004, 43, 275.
(14) Korobkov, I.; Gambarotta, S.; Yap, G. P. A. Organometallics
2001, 20, 2552.
́
nt, J.-M. Proc. Natl. Acad. Sci. U.S.A.
The addition of 2 equiv of pyridine N-oxide (py-O) to 3
leads to the immediate formation of green-yellow
UIV(ArF TPA)(py-O)2Cl (4). Complex 4 was obtained by
3
crystallization at −25 °C from a concentrated solution in
toluene layered with hexane in 90% yield, and the structure was
determined. A similar local geometry at the UIV ion is observed
in 4 as in 3 (Figure S4 in the Supporting Information), but
there is an elongation (∼0.07 Å) of the U−Npyrrolyl bonds in 4
consistent with the increased electron-donating nature of the
py-O ligand relative to pyridine. The major difference in the
solid-state structures of 3 and 4 is that the py-O ligands in 4 are
unable to orient into the same interarene interactions with the
ArF rings because of extension of the aryl group of the py-O
ligand out of the trigonal pocket. Importantly, the absence of
interarene interactions in 4 results in a significant change in the
1H NMR spectrum of 4 relative to 3. Apart from broadening of
the single 19F NMR signal at ∼280 K, complex 4 is C3-
symmetric in toluene-d8 between room temperature and −50
°C. No decoalescence of the 19F NMR peak for 4 into multiple
peaks was observed, signifying equivalent chemical environ-
ments of the ArF rings on the NMR time scale.
(15) Korobkov, I.; Gambarotta, S.; Yap, G. P. A. Angew. Chem., Int.
Ed. 2002, 41, 3433.
(16) Steed, J. W. T. D. R.; Wallace, K. J. Core Concepts in
Supramolecular Chemistry and Nanochemistry; Wiley: New York, 2007.
(17) Castro-Rodriguez, I.; Olsen, K.; Gantzel, P.; Meyer, K. J. Am.
Chem. Soc. 2003, 125, 4565.
In summary, we have shown that uranium(III) and
uranium(IV) complexes of the ArF TPA3− ligand possess
3
(18) Odom, A. L.; Arnold, P. L.; Cummins, C. C. J. Am. Chem. Soc.
1998, 120, 5836.
interligand noncovalent interactions with pyridine ligands
bound within a trigonal pocket. We expect that directed
interligand noncovalent stabilization will be a generally
applicable strategy for manipulation of reactive uranium
39
dx.doi.org/10.1021/ic202411f | Inorg. Chem. 2012, 51, 37−39