binaphthyl-azobenzene cyclic dyads, mainly1a, 1c, 2a, and
2c (Figure 1a).6 Among the chiroptical properties, the CD
spectrum is useful to identify the conformation and con-
figuration of all or part of a chiral compound. In the CD
spectra of our dyads, the signal in the shorter-wavelength
region (around 240 nm) is derived from the 1Bb transition
of the naphthalene rings, which reflects mainly the value of
θ (C(9)ꢀC(1)ꢀC(10)ꢀC(90), Figure 1b),7 while the signal
in the longer-wavelength region (over 350 nm) reflects
the helical chirality of cis-azobenzene6d and the twisting
direction of trans- azobenzene.6e The CD spectra in the
indicating a value of θ of ca. 90°, representing a somewhat
cisoid conformation. In contrast, the spectral shapes of
benzylated (R)-2a and (R)-2c were greatly different from
each other; that is, the first strong Cotton effects at around
240 nm were negative for (R)-2a and positive for (R)-2c
(Figure S2). These results indicated that the value of θ of
the benzylated analogues depends strongly on the length
of the linkers. Based on this finding, we speculated that
it might be possible to achieve reversible photoinversion,
i.e., cisoid/transoid transformation, of the benzylated bi-
naphthyl-azobenzene dyads. Compounds in which θ could
be controlled by photoirradiation would potentially have
wide application.
First, we attempted to predict θ of (R)-2a and (R)-2c by
calculation. Inoue et al. reported calculations on the
relationship between the θ, energy difference, and CD
spectra of 2,20-dimethoxy-1,10-binaphthyl.8 With reference
to their work, we examined the relationship between the
CD spectra and θ of model binaphthyl (R)-3 by calculation
at the DFT-D-B97D/TZVP level9 (Figure S5).10 The pre-
dicted CD spectra suggested that the binaphthyl skeleton
of (R)-2a favors the cisoid form, while that of (R)-2c favors
the transoid form, whether the azobenzene structure is in
cis- or trans-form. Therefore, we considered that (R)-2b,
in which the two moieties are connected by two linkers
of different lengths, might exhibit novel behavior; i.e., it
might be possible to achieve cisoid/transoid binaphthyl
conversion by means of photoirradiation.
Figure 2a shows the optimized structures of the cis and
trans forms of (R)-2b. Dihedral angles θ of the optimized
structures were 110° for (R)-cis-2b and 81° for (R)-trans-
2b. However, it should be noted that the permissible
conformations of each compound may include these opti-
mized conformations but do not seem to be limited to
them, because of metastable states due to molecular flex-
ibility. Therefore, the relationship between energy differ-
ence and θ was analyzed (Figure 2b). Energy minima of
both (R)-cis- and (R)-trans-2b appeared to be localized to a
Figure 1. Binaphthyl-azobenzene cyclic dyads (R)-1aꢀc, (R)-
2aꢀc, and a model binaphthyl (R)-3. (b) View of the frame
format of cisoid- and transoid-binaphthyls.
shorter-wavelength region of (R)-1a and (R)-1c were very
similar (Figure S1) and showed a typical negative split CD,
(4) For examples of planar-chiral compounds, see: (a) Jousselme, B.;
Blanchard, P.; Allain, M.; Levillain, E.; Dias, M.; Roncali, J. J. Phys.
Chem. A 2006, 110, 3488. (b) Tamaoki, N.; Mathews, M. J. Am. Chem.
Soc. 2008, 130, 11409. (c) Basheer, M. C.; Oka, Y.; Mathews, M.;
Tamaoki, N. Chem.;Eur. J 2010, 16, 3489. (d) Hashim, P. K.; Thomas,
R.; Tamaoki, N. Chem.;Eur. J. 2011, 17, 7304.
(8) Nishizaka, M.; Mori, T.; Inoue, Y. J. Phys. Chem. Lett. 2010, 1,
1809. They pointed out that the DFT calculations with common density
functionals (e.g. B3LYP, PBE0) were not suitable for this type of
calculation, but the DFT-D-B97D or RI-CC2 level should be used.
€
(9) (a) Schafer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97,
€
2571. (b) Schafer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1992, 100,
5829. (c) Calculations of the CD spectra of these dyads with this basis set
were infeasible due to the large molecular size.
(5) For examples of compounds with helical chirality, see: (a) Haberhauer,
G.; Kallweit, C. Angew. Chem., Int. Ed. 2010, 49, 2418. (b) Zhang, W.;
Yoshida, K.; Fujiki, M.; Zhu, X. Macromolecules 2011, 44, 5105.
(6) (a) Kawamoto, M.; Aoki, T.; Wada, T. Chem. Commun. 2007,
930. (b) Takaishi, K.; Kawamoto, M.; Tsubaki, K.; Wada, T. J. Org.
Chem. 2009, 74, 5723. (c) Kawamoto, M.; Shiga, N.; Takaishi, K.;
Yamashita, T. Chem. Commun. 2010, 46, 8344. (d) Takaishi, K.;
Kawamoto, M.; Tsubaki, K.; Furuyama, T.; Muranaka, A.; Uchiyama,
M. Chem.;Eur. J. 2011, 17, 1778. (e) Takaishi, K.; Muranaka, A.;
Kawamoto, M.; Uchiyama, M. J. Org. Chem. 2011, 76, 7623.
(7) (a) Harada, N.; Nakanishi, K. Acc. Chem. Res. 1972, 5, 257. (b)
Bari, L. D.; Pescitelli, G.; Salvadori, P. J. Am. Chem. Soc. 1999, 121,
7998. (c) Bari, L. D.; Pescitelli, G.; Marchetti, F.; Salvadori, P. J. Am.
Chem. Soc. 2000, 122, 6395. (d) Wang, C.; Zhu, L.; Xiang, J.; Yu, Y.;
Zhang, D.; Shuai, Z.; Zhu, D. J. Org. Chem. 2007, 72, 4306. (e)
Niezborala, C.; Hache, F. J. Am. Chem. Soc. 2008, 130, 12783. (f)
Polavarapu, P. L.; Jeirath, N.; Walia, S. J. Phys. Chem. A 2009, 113,
5423. (g) Takaishi, K.; Kawamoto, M.; Tsubaki, K. Org. Lett. 2010, 12,
1832. (h) Nishizaka, M.; Mori, T.; Inoue, Y. J. Phys. Chem. A 2011, 115,
5488. (i) Pescitelli, G.; Bari, L. D.; Berova, N. Chem. Soc. Rev. 2011, 40,
4603.
(10) Calculations were done by Gaussian 09, revision B.01. Frisch,
M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson,
G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov,
A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.;
Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.;
Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.;
Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.;Kudin,
K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari,
K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.;
Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken,
V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev,
O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin,
R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.;
€
Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman,
J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc.: Wallingford,
CT, 2009. The theoretical analysis of (R)-3 indicated that the sign of the
Cotton effect at 240ꢀ270 nm, which is characteristic, reversed between
80°ꢀ90°.
Org. Lett., Vol. 14, No. 1, 2012
277