Substitution Reactions of Aryl Bis(4-methoxyphenyl) Phosphates
J . Org. Chem., Vol. 67, No. 7, 2002 2217
pKa(H2O)7 and pKa(MeCN)8 values of phenols. Available
pKa values gave the following relations, eqs 5, for phenols.
These relations indicate that the Bro¨nsted basicities of
phenolates change by ca. twice in acetonitrile relative to
those in water (δpKa(MeCN)/δpKa(H2O) = 2.1) for a given
substituent changes (δσ-). In contrast, however, the ratio
of âZ, i.e., changes in rates (δ log k2) (Lewis basicities)
with pKa’s for a given substituent changes (δpKa) are only
an average of 1.6 () âZ with pKa(H2O)/âZ with pKa-
(MeCN)); i.e., the ratios differ by a factor of ca. 0.76
() 1.6/2.1). This is of course due to the partial bond
cleavage (or formation) of phenolate anions in the rate-
determining step (in the TS) in contrast to the complete
deprotonation (or protonation) in the pKa measurements
of pyridines.
for concerted processes have been reported in phosphoryl
group transfer reactions.14 Skoog and J encks14a reported
âX ) 0.17 and 0.19 for the concerted reactions of pyridines
with phosphorylated 3-methoxypyridine and âX ) 0.22
and 0.28 for the reaction with phosphorylated 4-mor-
pholinopyridine, respectively. Williams and co-workers14b
obtained âX ) 0.15 for the similar concerted reaction.
Williams and co-workers14d reported also the similar
magnitudes of âX () 0.14-0.60) and âZ () -0.52 to -0.81)
values for the concerted reactions of phenolate anions
with phenyl diphenyl phosphate ((PhO)2P(dO)OAr +
ArO-). These are certainly similar to or even smaller than
the âX values obtained for the weakly basic nucleophiles
in the present work. It should be noted, however, that
âX values larger than 0.7 have been also found in other
concerted reactions.15 On the other hand, the magnitudes
of âX and âZ values in a stepwise mechanism with the
rate-limiting bond formation of T( are in general sub-
stantially smaller (âX ) 0.0-0.3 and âZ ) -0.1 to -0.3)16
than those for the concerted reactions. For example, âX
values in the range âX ) 0.19-0.23 have been obtained
for the stepwise reactions with rate-limiting bond making
in the pyridinolysis of S-phenyl 4-nitrobenzoates in
acetonitrile, XC5H4N + 4-NO2C6H4C(dO)SC6H4Z.11e Sen-
atore et al.2b,17 obtained a biphasic rate dependence on
the basicity of nucleophiles in the reaction of alkoxides
and phenoxides with aryl methanesulfinates (CH3S(dO)-
OAr), which indicated a mechanistic changeover from a
breakdown (âX ) 0.79) to formation (âX = 0.0) of TBP
intermediate as the basicity of the nucleophile is in-
creased. The âX of near zero is even smaller than the
values obtained (âX ) 0.09-0.14) with the strongly basic
nucleophiles in Table 2. Since in the rate-limiting forma-
tion of T( the central atom (P)-leaving group (OAr) bond
should not break but relax somewhat, the âZ values
should be much smaller than those in the concerted
processes where the leaving group bond is mostly broken
and the nucleophile-phosphorus bond is mostly formed
in the TS. (iv) The unusually large negative FXZ value
for the weakly basic nucleophiles (FXZ ) -1.98) is indica-
tive of a TS formed by the concerted front-side nucleo-
philic attack,18 II, since the nucleophile and leaving group
can be in close proximity in such TS. Although we have
no conclusive proof for this proposal, there are evidence18b
in support of such structural dependence of the large
negative FXZ as we have advanced in connection with the
frontside attack SN2 TS structures for the anilinolysis of
1- (FXZ ) -0.56)19a and 2-phenylethyl (FXZ ) -0.45)19b and
pKa(H2O) ) (-2.11 ( 0.08)σ - + 9.89 ( 0.05;
r ) 0.960, N ) 8 (5a)
pKa(MeCN) ) (-4.35 ( 0.09)σ - + 26.58 ( 0.09;
r ) 0.998, N ) 12 (5b)
Regarding the biphasic linear free energy relationships
with nucleophile variation, FX (Fnuc) and âX (ânuc), we
propose mechanistic change from a concerted (with less
basic pyridines) to a stepwise mechanism with rate-
limiting formation of a TBP-5C intermediate, T( (with
more basic pyridines), based on the following grounds:
(i) It is generally known that the concerted path is
favored by weakly basic nucleophiles while the stepwise
path is favored by strongly basic nucleophiles.4,9 (ii) The
sign of FXZ is negative (FXZ ) -1.98 for weakly basic
nucleophiles) for the concerted paths but is positive for
the stepwise processes (FXZ ) 0.97 for strongly basic
nucleophiles) in accordance with the mechanistic criteria
established based on theoretical10 as well as experimental
results.5,11 (iii) The magnitudes of âX and âZ values are
relatively large for weakly basic nucleophiles (âX ) 0.22-
0.39, âZ ) -0.42 to -0.56). Although the âX values in the
range 0.4-0.7 are obtained for most of the concerted
displacement reactions at the carbonyl carbon12 and
phosphoryl P centers,13 some âX values smaller than 0.4
(7) Albert, A.; Serjeant, E. P. The Determination of Ionization
Constants, 3rd ed.; Chapman and Hall: New York, 1984.
(8) Izutsu, K. Acid-Base Dissociation Constants in Dipolar Aprotic
Solvents; Blackwell Scientific Publications: Oxford, 1990.
(9) (a) Ba-Saif, S. A.; Waring, M. A.; Williams, A. J . Am. Chem. Soc.
1990, 112, 8115. (b) Williams, A. Acc Chem. Res. 1989, 22, 387.
(10) (a) Lee, I. Bull. Korean Chem. Soc. 1994, 15, 985. (b) Lee, I.;
Song, C. H. Bull. Korean Chem. Soc. 1986, 7, 186. (c) Lee, I. J . Chem.
Soc., Perkin Trans. 2 1989, 943. (d) Lee, I. Chem. Soc. Rev. 1990, 19,
133.
(11) (a) Oh, H. K.; Shin, C. H.; Lee, I. J . Chem. Soc., Perkin Trans.
2 1993, 2411. (b) Koh, H. J .; Kim, S. I.; Lee, B. C.; Lee, I. J . Chem.
Soc., Perkin Trans. 2 1996, 1353. (c) Koh, H. J .; Lee, J . W.; Lee, H.
W.; Lee, I. New J . Chem. 1997, 21, 447. (d) Koh, H. J .; Lee, J . W.; Lee,
H. W.; Lee, I. Can. J . Chem. 1998, 76, 710. (e) Koh, H. J .; Han, K. L.;
Lee, I. J . Org. Chem. 1999, 64, 4783. (f) Lee, I.; Koh, H. J . New J .
Chem. 1996, 20, 131. (g) Koh, H. J .; Kim, T. H.; Lee, B.-S.; Lee, I. J .
Chem. Res., Synop. 1996, 482; J . Chem. Res., Miniprint 2741. (h) Oh,
H. K.; Yu, J . H.; Cho, I. H.; Lee, I. Bull. Korean Chem. Soc. 1997, 18,
390.
(14) (a) Skoog, M. T.; J encks, W. P. J . Am. Chem. Soc. 1984, 106,
7697. (b) Bourne, N.; Williams, A. J . Am. Chem. Soc. 1984, 106, 7591.
(c) Williams, A. J . Am. Chem. Soc. 1985, 107, 6335. (d) Ba-Saif, S. A.;
Waring, M. A.; Williams, A. J . Chem. Soc., Perkin Trans. 2 1991, 1653.
(15) Ba-Saif, S. A.; Luthra, A. K.; Williams, A. J . Am. Chem. Soc.
1989, 111, 2647.
(16) (a) Gresser, M. J .; J encks, W. P. J . Am. Chem. Soc. 1977, 99,
6963. (b) Castro, E. A. Chem. Rev. 1999, 99, 3505. (c) Hupe, D. J .;
J encks, W. P. J . Am. Chem. Soc. 1977, 99, 451. (d) Castro, E. A.; Ruiz,
M. G.; Salinas, S.; Santos, J . G. J . Org. Chem. 1999, 64, 4817. (e)
Butler, A. R.; Robertson, I. H.; Bacaloglu, R. J . Chem. Soc., Perkin
Trans. 2 1974, 1733. (f) Bond, P. M.; Castro, E. A.; Moodie, R. B. J .
Chem. Soc., Perkin Trans. 2 1976, 68.
(12) (a) Castro, E. A.; Cubillos, M.; Santos, J . G. J . Org. Chem. 1998,
63, 6820. (b) Castro, E. A.; Leandro, L.; Millan, P.; Santos, J . G. J .
Org. Chem. 1999, 64, 1953. (c) Castro, E. A.; Minoz, P.; Santos, J . G.
J . Org. Chem. 1999, 64, 8298. (d) Castro, E. A.; Ibanez, H.; Salas, M.;
Santos, J . G. J . Org. Chem. 1991, 56, 4819. (e) Castro, E. A.; Salas,
M.; Santos, J . G. J . Org. Chem. 1994, 59, 30. (f) Castro, E. A.; Pizarro,
M. I.; Santos, J . G. J . Org. Chem. 1996, 61, 5982.
(13) (a) Bourne, N.; Chrystiuk, E.; Davis, A. M.; Williams, A. J . Am.
Chem. Soc. 1988, 110, 1890. (b) D’Rozario, P.; Smith, R. L.; Williams,
A. J . Am. Chem. Soc. 1984, 106, 5027.
(17) Senatore, L.; Ciuffarin, E.; Fava, A.; Levita, G. J . Am. Chem.
Soc. 1973, 95, 2918.
(18) (a) Lee, I. Chem. Soc. Rev. 1995, 24, 223. (b) Lee, I.; Shim, C.
S.; Lee, H. W.; Lee, B.-S. Bull. Korean Chem. Soc. 1991, 12, 255. (c)
Lee, I.; Kim, H. Y.; Lee, H. W.; Kim, I. C. J . Phys. Org. Chem. 1989,
2, 356.
(19) (a) Lee, I.; Kim, H. Y.; Kang, H. K.; Lee, H. W. J . Org. Chem.
1988, 53, 2678. (b) Lee, I.; Choi, Y. H.; Lee, H. W.; Lee, B. C. J . Chem.
Soc., Perkin Trans. 2 1988, 1537. (c) Koh, H. J .; Lee, H. W.; Lee, I. J .
Chem. Soc., Perkin Trans. 2 1994, 125.