γ-selective allylÀaryl coupling reaction using nitrogen-based
ligands(eq1).11 The reaction was catalyzed by cationic acetoxo-
palladium(II) to afford allylÀaryl coupling products with
R to γ chirality transfer with retention of the stereochemistry.
Scheme 1. AllylÀAryl Coupling vs β-H Elimination
to give a π-allyl(aryl)palladium intermediate, followed by
reductive elimination to afford allylÀaryl products
(Scheme 1).2a,4 However, the reaction generally gave
conjugated diene 5a instead of the desired coupling
products because the π-allylpalladium intermediate un-
derwent the β-H elimination more quickly than the
transmetalation with arylboronic acid.2a,5 This phenom-
enon might be one explanation for the limited develop-
ment of SuzukiÀMiyaura coupling with secondary allylic
fragments.
Although transition-metal-catalyzed allylic arylation
with arylmetallic reagents is another powerful approach
for allylÀaryl coupling, the reactions have not been well
exploited, and the arylmetallic reagents have mostly been
limited to highly reactive ones, such as aryl Grignard,6
zinc,7 and aluminum8 reagents. The allylic arylation with
arylboronic acid derivatives has been much less explored
because of their poor nucleophilicity.9,10 Most recently,
Sawamura and co-workers reported a Pd(II)-catalyzed
Herein, we disclose an effective method for the Pd-
catalyzed SuzukiÀMiyaura coupling reaction of unsym-
metric 1,3-disubstituted secondary allylic carbonates12
with arylboronic acids (eq 2). The reaction afforded the
allylÀaryl coupling products in a high level of isolated
yields with excellent chemo- and regioselectivity. The
reaction of optically active allylic carbonates furnished
allylÀaryl coupling products with excellent enantioselec-
tivities with inversion of the absolute configuration. The
methodology provides a simple and practical protocol
that allows rapid access to allylÀaryl coupling products
using in-situ-generated palladiumÀphosphine complex
as a catalyst and a wet solvent under a base-free system.
Preliminary studies demonstrated that the in-situ-gen-
erated palladium complex from Pd(OAc)213,14 (2 mol %)
and triphenylphosphine (4 mol %) was found to catalyze
the coupling of allylic carbonate 1a with phenylboronic
acid (2a) in THF in the presence of water (500 mol %) at
50 °C, affording allylÀaryl coupling product 3a in 87%
isolated yield with complete regio- and E/Z-selectivities
with a trace amount of β-H elimination product 5a
(Table 1, entry 1). Notably, water played a significant role
in the coupling reaction.15 The coupling reaction can
tolerate different allylic carbonate to give allylÀaryl cou-
pling product with the same efficiency (Table 1, entry 2).
Under identical reaction conditions, however, the reac-
tions of allylic acetate and benzoylate gave comparatively
poor results (Table 1, entries 3 and 4). The reaction
efficiency was also sensitive to the nature of the phosphine
(4) For Pd-catalyzed regioselective allylic alkylation, see: (a) Norsikian,
S.; Chang, C.-W. Curr. Org. Synth. 2009, 6, 264. (b) Trost, B. M.; Van
Vranken, D. L. Chem. Rev. 1996, 96, 395.
(5) (a) ref 2e. (b) Bouyssi, D.; Gerusz, V.; Balme, G. Eur. J. Org.
Chem. 2002, 2445. (c) Chen, H.; Deng, M.-Z. J. Organomet. Chem. 2000,
603, 189. (d) Kobayashi, Y.; Mizojiri, R.; Ikeda, E. J. Org. Chem. 1996,
61, 5391. (e) Tsuji, J.; Yamakawa, T.; Kaito, M.; Mandai, T. Tetra-
hedron Lett. 1978, 24, 2075.
(6) (a) Lauer, A. M.; Mahmud, F.; Wu, J. J. Am. Chem. Soc. 2011,
133, 9119. (b) Selim, K. B.; Nakanishi, H.; Matsumoto, Y.; Yamamoto,
ꢀ
Y.; Yamada, K.; Tomioka, K. J. Org. Chem. 2011, 76, 1398. (c) Thalen,
ꢀ
€
L. K.; Sumic, A.; Bogar, K.; Norinder, J.; Persson, A. K. A.; Backvall
€
J.-E. J. Org. Chem. 2010, 75, 6842. (d) Lolsberg, W.; Ye, S.; Schmalz
H.-G. Adv. Synth. Catal. 2010, 352, 2023. (e) Selim, K. B.; Matsumoto,
Y.; Yamada, K.; Tomioka, K. Angew. Chem., Int. Ed. 2009, 48, 8733.
(f) Selim, K. B.; Yamada, K.; Tomioka, K. Chem. Commun. 2008, 5140.
(7) (a) Polet, D.; Rathgeb, X.; Falciola, C. A.; Langlois, J.-B.; Hajjaji,
S. E.; Alexakis, A. Chem.;Eur. J. 2009, 15, 1205. (b) Alexakis, A.;
Hajjaji, S. E.; Polet, D.; Rathgeb, X. Org. Lett. 2007, 9, 3393.
(c) Kacprzynski, M. A.; May, T. L.; Kazane, S. A.; Hoveyda, A. H.
Angew. Chem., Int. Ed. 2007, 46, 4554. (d) Evans, P. A.; Uraguchi, D. J.
Am. Chem. Soc. 2003, 125, 7158. (e) Kobayashi, Y.; Tokoro, Y.;
Watatani, K. Eur. J. Org. Chem. 2000, 3825.
(11) (a) Makida, Y.; Ohmiya, H.; Sawamura, M. Chem.;Asian J.
2011, 6, 410. (b) Li, D.; Tanaka, T.; Ohmiya, H.; Sawamura, M. Org.
Lett. 2010, 12, 3344. (c) Ohmiya, H.; Makida, Y.; Li, D.; Tanabe, M.;
Sawamura, M. J. Am. Chem. Soc. 2010, 132, 879. (d) Ohmiya, H.;
Makida, Y.; Tanaka, T.; Sawamura, M. J. Am. Chem. Soc. 2008, 130,
17276.
(12) For SuzukiÀMiyaura coupling of propargylic carbonates, see:
Moriya, T.; Miyaura, N.; Suzuki, A. Synlett 1994, 149.
(13) Other Pd(0) or Pd(II) precursors, for example, Pd2(dba)3,
Pd(PPh3)4, PdCl2, and Pd(CF3CO2)2, were attempted in the coupling
reaction, but they were less effective under otherwise identical
conditions.
(8) Gao, F.; Lee, Y.; Mandai, K.; Hoveyda, A. H. Angew. Chem., Int.
Ed. 2010, 49, 8370.
(9) For Rh-catalyzed allylic arylation with aryboronic acids, see:
(a) Menard, F.; Perez, D.; Roman, D. S.; Chapman, T. M.; Lautens, M.
J. Org. Chem. 2010, 75, 4056. (b) Yu, B.; Menard, F.; Isono, N.; Lautens,
M. Synthesis 2009, 853. (c) Miura, T.; Takahashi, Y.; Murakami, M. M.
Chem. Commun. 2007, 595. (d) Menard, F.; Chapman, T. M.;
Dockendorff, C.; Lautens, M. Org. Lett. 2006, 8, 4569. (e) Dong, L.;
Xu, Y.-J.; Cun, L.-F.; Cui, X.; Mi, A.-Q.; Jiang, Y.-Z.; Gong, L.-Z. Org.
Lett. 2005, 7, 4285. (f) Lautens, M.; Dockendorff, C.; Fagnou, K.;
Malicki, A. Org. Lett. 2002, 4, 1311.
(10) For Cu-catalyzed γ-selective allylic arylation with arylboronic
acids, see: (a) Shintani, R.; Takatsu, K.; Takeda, M.; Hayashi, T. Angew.
Chem., Int. Ed. 2011, 50, 8656. (b) Ohmiya, H.; Yokokawa, N.;
Sawamura, M. Org. Lett. 2010, 12, 2438. (c) Whittaker, A. M.; Rucker,
R. P.; Lalic, G. Org. Lett. 2010, 12, 3216.
(14) The reaction between Pd(OAc)2 and arylboronic acid gave
reactive Pd(0) species, which works as a catalyst in the allylÀaryl
ꢁ
coupling as shown in Scheme 1; see: Moreno-Manas, M.; Perez, M.;
ꢀ
Pleixats, R. J. Org. Chem. 1996, 61, 2346.
(15) The reaction was remarkably inhibited in the absence of water.
Water likely accelerates the transmetalation step as outlined in Scheme 1
to lead to allylÀaryl coupling product effectively. See ref 1e.
Org. Lett., Vol. 14, No. 1, 2012
391