copper acetylides, but also as a ligand to chelate with copper(I)
acetylide and enhance the solubility and reactivity of copper species.
accomplished in a single operation. The present methodology
opens up an interesting and attractive avenue for the synthesis of
amide functionality due to the following features: easily available
materials, cheap catalyst, and environmentally benign oxygen
source. Studies of the detailed mechanism of this process and its
application are ongoing.
We thank the Natural Science Foundation of China
(20802072) for financial support and Professor Albert S. C. Chan
for helpful discussions and suggestions.
ð4Þ
Notes and references
Subsequently, when the reaction of 1a with 2a was conducted
in the absence of dioxygen, enamine intermediate 10aa was
detected by NMR (see ESIw) (eqn (4)). Nevertheless, enamine
intermediate 10aa could not be detected in the presence of
dioxygen (eqn (4)). According to the general process of the
anti-Markovnikov hydroamination of alkyne,9d,13 we envisioned
that a-aminovinylcopper(I) complex 5aa, the hydroamination
product of copper acetylide 4aa, might be involved in the present
reaction system. In the absence of dioxygen, 5aa underwent
protonation to afford enamine intermediate 10aa, which was
1 T. Punniyamurthy, S. Velusamy and J. Iqbal, Chem. Rev., 2005,
105, 2329.
2 (a) J. M. Humphrey and A. R. Chamberlin, Chem. Rev., 1997,
97, 2243; (b) T. Cupido, J. Tulla-Puche, J. Spengler and
F. Albericio, Curr. Opin. Drug Discovery Dev., 2007, 10, 768.
3 (a) P. R. Ortiz de Montellano, Acc. Chem. Res., 1998, 31, 543;
(b) Z. Zhang, Y. Li, R. A. Stearns, P. R. Ortiz de Montellano,
T. A. Baillie and W. Tang, Biochemistry, 2002, 41, 2712; (c) C. Colas
and P. R. Ortiz de Montellano, Chem. Rev., 2003, 103, 2305.
4 Transformation of thioamides using dioxygen to access amides,
see: F. Shibahara, A. Suenami, A. Yoshida and T. Murai, Chem.
Commun., 2007, 2354.
5 (a) S.-Y. Han and Y.-A. Kim, Tetrahedron, 2004, 60, 2447; (b) C. A.
G. N. Montalbetti and V. Falque, Tetrahedron, 2005, 61, 10827.
6 W.-K. Chan, C.-M. Ho, M.-K. Wong and C.-M. Che, J. Am.
Chem. Soc., 2006, 128, 14796.
7 (a) W.-J. Yoo and C.-J. Li, J. Am. Chem. Soc., 2006, 128, 13064;
(b) K. Ekour-Kovi and C. Wolf, Org. Lett., 2007, 9, 3429;
(c) J. Gao and G.-W. Wang, J. Org. Chem., 2008, 73, 2955;
(d) A. Tillack, I. Rudloff and M. Beller, Eur. J. Org. Chem.,
2001, 523.
8 (a) C. Gunanathan, Y. Ben-David and D. Milstein, Science, 2007,
317, 790; (b) L. U. Nordstrøm, H. Vogt and R. Madsen, J. Am.
Chem. Soc., 2008, 130, 17672; (c) A. J. A. Watson, A. C. Maxwell
and J. M. J. Williams, Org. Lett., 2009, 11, 2667; (d) T. Zweifel,
J. V. Naubron and H. Grutzmacher, Angew. Chem., Int. Ed., 2009,
48, 559.
9 (a) C. Zhang and N. Jiao, J. Am. Chem. Soc., 2010, 132, 28;
(b) T. Hamada, X. Ye and S. S. Stahl, J. Am. Chem. Soc., 2008,
130, 833; (c) L. Zhou, Q. Shuai, H.-F. Jiang and C.-J. Li, Chem.–
Eur. J., 2009, 15, 11668; (d) L. Zhou, D. S. Bohle, H.-F. Jiang and
C.-J. Li, Synlett, 2009, 937.
10 (a) D. C. Owsley and C. E. Castro, Org. Synth., 1972, 52, 128;
(b) H. Q. Liu and J. F. Harrod, Can. J. Chem., 1990, 68, 1100;
(c) Y.-X. Gao, G. Wang, L. Chen, P.-X. Xu, Y.-F. Zhao,
Y.-B. Zhou and L.-B. Han, J. Am. Chem. Soc., 2009, 131, 7956.
11 For the reactions of isolated copper acetylide with piperidine see
ESIw.
12 (a) G. Sekar, A. D. Gupta and V. K. Singh, Tetrahedron Lett.,
1996, 37, 8435; (b) D. Fournier, M.-L. Romagne, S. Pascual,
V. Montembault and L. Fontaine, Eur. Polym. J., 2005,
41, 1576; (c) K. G. Thakur and G. Sekar, Synthesis, 2009, 2785;
(d) S. Adimurthy, C. C. Malakar and U. Beifuss, J. Org. Chem.,
2009, 74, 5648.
1
proved by H NMR. On the basis of the growing amount of
information about copper–dioxygen reactivity,14,15 we speculated
that 5aa might react more readily with dioxygen to generate the
corresponding copper–oxygen complex under an oxygen atmo-
sphere, which would lead to the formation of the C–O bond in
subsequent reactions.14d
Based on the above information and previous studies,10–16 we
propose a postulated reaction pathway shown in Scheme 1. The
LCu(I)-acetylide species 4 (L = DBU) was formed by the
reaction of the Cu(I) species with alkyne in the presence of
DBU and amine. Then, the reaction of the acetylide species with
amine would lead to the formation of the key intermediate
a-aminovinyl–Cu(I) complex 5. Subsequently, complex 5 was quickly
oxygenated by dioxygen to form more active m-peroxo dicopper(II)
complex 6,14 which underwent the O–O bond cleavage,15 single
electron transfer,16 protonation, followed by reductive elimination of
copper species to deliver the corresponding a-aminoenol complex 11
and Cu(I) species. Finally, the desired amide 3 was generated by the
isomerization of 11.
In conclusion, we have developed the first transition-metal-
catalyzed direct oxidative synthesis of amides by employing O2
as the oxidant and oxygen source. In this process, anti-
Markovnikov hydroamination of alkyne and subsequent oxidation
by copper activated dioxygen into the resulting amide could be
13 Y. Fukumoto, H. Asai, M. Shimizu and N. Chatani, J. Am. Chem.
Soc., 2007, 129, 13792.
14 (a) E. A. Lewis and W. B. Tolman, Chem. Rev., 2004, 104, 1047;
(b) L. M. Mirica, X. Ottenwaelder and T. D. P. Stack, Chem. Rev.,
2004, 104, 1013; (c) Y. Shiota and K. Yoshizawa, Inorg. Chem.,
2009, 48, 838; (d) S. Chiba, L. Zhang and J.-Y. Lee, J. Am. Chem.
Soc., 2010, 132, 7266.
15 (a) A. Crespo, M. A. Martı, A. E. Roitberg, L. M. Amzel and
D. A. Estrin, J. Am. Chem. Soc., 2006, 128, 12817;
(b) A. Kunishita, H. Ishimaru, S. Nakashima, T. Ogura and
S. Itoh, J. Am. Chem. Soc., 2008, 130, 4244; (c) M. Pitie and
G. Pratviel, Chem. Rev., 2010, 110, 1018.
16 (a) T. Kamachi, N. Kihara, Y. Shiota and K. Yoshizawa, Inorg.
Chem., 2005, 44, 4226; (b) S. T. Prigge, B. A. Eipper, R. E. Mains
and L. M. Amzel, Science, 2004, 304, 864; (c) A. Crespo,
M. A. Martı, A. E. Roitberg, L. M. Amzel and D. A. Estrin,
J. Am. Chem. Soc., 2006, 128, 12817.
Scheme 1 Postulated reaction pathway.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 305–307 307