unactivated terminal alkynes is rarely reported.6 Echavarren
et al. elegantly described a Au-catalyzed intramolecular anti-
Markovnikov hydroindolation of terminal alkynes lead-
ing to the formation of six- to eight-membered rings.6aÀc
Barluenga et al. demonstrated that the intermolecular addi-
tion of indoles to terminal alkynes bearing a properly posi-
tioned hydroxyl “directing group” proceeded in a highly
selective anti-Markovnikov pattern via Au catalysis.6d To
the best of our knowledge, intermolecular anti-Markovnikov
hydroindolation of simple unactivated terminal alkynes
without any “directing groups” is still an unmet challenge.
Herein, we disclose the first general solution to this chal-
lenge by resorting to Re catalysis (Scheme 1b). Also, the
regioselectivity can be readily reversed to the Markovnikov
pattern while using the same catalyst, which highlights the
unique features of Re catalysis.7,8
used as catalysts (entries 4,5). Toluene was the superior
solvent (entries 6À10). A higher temperature is detrimental
to the reaction presumably due to the decomposition of 3a
(entries 11,12).9 The increased amount of 2a and reaction
concentration gave the highest conversion of 1a (entries
13À15). The catalyst loading can be further reduced to
5 mol % while maintaining the same conversion, and 3a
was isolated as a pure product in 89% yield (entry 16).
Other variations gave no better results (entries 17À19).
Importantly, no Markovnikov adduct 4a was detected
during the screening of reaction conditions. To the best of
our knowledge, this represents the first successful example
of intermolecular anti-Markovnikov addition of indoles
to unactivated terminal alkynes without directing groups.
Table 1. Optimization of Reaction Parametersa
Scheme 1. Intermolecular Hydroindolation of Unactivated
Terminal Alkynes
catalyst
(mol %)
2a
t
convn
(%)b
entry
(equiv)
solvent
(°C)
c
1
Mn(CO)5Br (10)
Mn2(CO)10 (10)
Re2(CO)10 (10)
Re(CO)5Cl (10)
Re(CO)5Br (10)
Re(CO)5Br (10)
Re(CO)5Br (10)
Re(CO)5Br (10)
Re(CO)5Br (10)
Re(CO)5Br (10)
Re(CO)5Br (10)
Re(CO)5Br (10)
Re(CO)5Br (10)
Re(CO)5Br (10)
Re(CO)5Br (10)
Re(CO)5Br (5)
Re(CO)5Br (5)
Re(CO)5Br (5)
Re(CO)5Br (2)
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.5
2.0
1.5
1.5
1.5
1.5
1.5
toluene
toluene
toluene
toluene
toluene
xylene
THF
100
100
100
100
100
100
100
100
100
100
120
90
À
c
c
2
À
À
3
4
33
55
46
5
6
First, the reaction of N-methylindole 1a and 1-hexyne 2a
was examined with a wide range of parameters (Table 1).
No conversion was observed withcatalysts of Mn(CO)5Br,
Mn2(CO)10, or Re2(CO)10 (entry 1À3). To our delight, the
anti-Markovnikov adduct, bisindolylalkane 3a, was form-
ed as a single product when Re(CO)5X (X = Cl, Br) were
c
7
À
8
dioxane
DMF
20
c
9
À
10
11
12
13
14
15d
16d
17d,f
18d
19d
DCE
30
toluene
toluene
toluene
toluene
toluene
toluene
toluene
toluene
toluene
30
60
90
76
(6) For intramolecular examples, see: (a) Ferrer, C.; Echavarren,
A. M. Angew. Chem., Int. Ed. 2006, 45, 1105. (b) Ferrer, C.; Amijs,
C. H. M.; Echavarren, A. M. Chem.;Eur. J. 2007, 13, 1358. (c) Ferrer,
C.; Escribano-Cuesta, A.; Echavarren, A. M. Tetrahedron 2009,
65, 9015. For an intermolecular hydroxyl-directed example, see:(d)
90
73
90
92
90
92 (89)e
68
90
80
66
ꢀ
~ ꢀ
Barluenga, J.; Fernandez, A.; Rodrıguez, F.; Fananas, F. J. J. Organo-
´
met. Chem. 2009, 694, 546.
(7) For an excellent review, see: Kuninobu, Y.; Takai, K. Chem. Rev.
2011, 111, 1938.
90
71
a All reactions were carried out on 0.1 mmol scale in 1 mL of solvent
for 24 h unless otherwise noted. b The conversion of 1a was determined
by 1H NMR of the reaction mixtures. c No conversion was detected.
d 0.5 mL of toluene. e Isolated yield of pure product 3a on 0.5 mmol scale.
f Reaction time: 18 h.
(8) For selected examples, see: (a) Kennedy-Smith, J. J.; Staben, S. T.;
Toste, F. D. J. Am. Chem. Soc. 2004, 126, 4526. (b) Hua, R.; Tian, X. J.
Org. Chem. 2004, 69, 5782. (c) Kuninobu, Y.; Kawata, A.; Takai, K.
Org. Lett. 2005, 7, 4823. (d) Kusama, H.; Yamabe, H.; Onizawa, Y.;
Hoshino, T.; Iwasawa, N. Angew. Chem., Int. Ed. 2005, 44, 468. (e)
Chung, L. W.; Lee, H. G.; Lin, Z.; Wu, Y.-D. J. Org. Chem. 2006, 71,
6000. (f) Yudha, S. S.; Kuninobu, Y.; Takai, K. Org. Lett. 2007, 9, 5609.
(g) Takaya, H.; Ito, M.; Murahashi, S.-I. J. Am. Chem. Soc. 2009, 131,
10824. (h) Saito, K.; Onizawa, Y.; Kusama, H.; Iwasawa, N. Chem.;
Eur. J. 2010, 16, 4716. (i) Kuninobu, Y.; Matsuzaki, H.; Nishi, M.;
With the optimized conditions in hand, the scope of the
reaction was investigated with a variety of indoles and
alkynes(Table 2). While N-Hand -acyl indoles affordedno
products, N-alkyl or -benzyl indoles proved to be suitable
substrates for this reaction (entries 1À2). Both electron-
donating and -withdrawing substituents on the indole core
are well tolerated in this protocol (entries 3À7). It is of note
that halogen groups remain intact after the reaction, which
leaves easy handles for further synthetic elaborations
(entries 5À7). It was observedthat many alkyl alkynes with
Takai, K. Org. Lett. 2011, 13, 2959. (j) Dudle, B.; Rajesh, K.; Blacque,
ꢀ
a-Alvarez, J.;
O.; Berke, H. J. Am. Chem. Soc. 2011, 133, 8168. (k) Garcı
´
Dı
´
ez, J.; Gimeno, J.; Seifried, C. M. Chem. Commun. 2011, 47, 6470. (l)
Liu, Q.; Li, Y.-N.; Zhang, H.-H.; Chen, B.; Tung, C.-H.; Wu, L.-Z. J.
Org. Chem. 2011, 76, 1444. (m) Ettedgui, J.; Diskin-Posner, Y.; Weiner,
L.; Neumann, R. J. Am. Chem. Soc. 2011, 133, 188.
(9) For more details, see Supporting Information (SI).
(10) For cyclopropyl alkyne as a radical clock, see: (a) Back, T. G.;
Muralidharan, K. R. J. Org. Chem. 1989, 54, 121. (b) Gottschling, S. E.;
Grant, T. N.; Milnes, K. K.; Jennings, M. C.; Baines, K. M. J. Org.
Chem. 2005, 70, 2686 and references therein.
Org. Lett., Vol. 14, No. 2, 2012
589