ARTICLE
WWW.POLYMERCHEMISTRY.ORG
J. A. J Appl Phys 2000, 88, 5777–5784; (c) Topart, P.; Hourque-
bie, P. Thin Solid Films 1999, 352, 243–248.
Furthermore, a single layer electrochromic cell was fabri-
cated as preliminary investigation (Fig. 4). The polyamide
films were spray-coated onto ITO-glass and then dried. After-
wards, the gel electrolyte was spread on the polymer-coated
side of the electrode and the electrodes were sandwiched. To
prevent leakage, an epoxy resin was applied to seal the de-
vice. As a typical example, an electrochromic cell based on
polyamide OAQ-T was fabricated. The polymer film is pale
yellow in neutral form. When the voltage was increased (to
a maximum of 2.0 V), the color changed to green due to elec-
tro-oxidation, the same as that was already observed in the
solution type electrolyte system. When the potential was
subsequently set back at 0 V, the polymer film turned back
to original pale yellow. We believe that optimization could
further improve the device performance and fully explore
the potential of these electrochromic polyamides.
4 (a) Vickers, S. J.; Ward, M. D. Electrochem Commun 2005, 7,
389–393; (b) Schwab, P. F. H.; Diegoli, S.; Biancardo, M.;
Bignozzi, C. A. Inorg Chem 2003, 42, 6613–6615; (c) Qi, Y.; Wang,
Z. Y. Macromolecules 2003, 36, 3146–3151; (d) Wang, S.; Todd,
E. K.; Birau, M.; Zhang, J.; Wan, X.; Wang, Z. Y. Chem Mater
2005, 17, 6388–6394; (e) Qiao, W.; Zheng, J.; Wang, Y.; Zheng, Y.;
Song, N.; Wan, X.; Wang, Z. Y. Org Lett 2008, 10, 641–644; (f)
Zheng, J.; Qiao, W.; Wan, X.; Gao, J. P.; Wang, Z. Y. Chem Mater
2008, 20, 6163–6168; (g) Hasanain, F.; Wang, Z. Y. Dyes, Pig-
ments 2009, 83, 95–101; (h) Zheng, Y.; Zheng, J.; Dou, L.; Qiao,
W.; Wan, X. J Mater Chem 2009, 19, 8470–8477; (i) Qiao, W.;
Wang, F.; Zou, D.; Wan, X. Synth Met 2009, 159, 2556–2563.
5 (a) Shi, P.; Amb, C. M.; Knott, E. P.; Thompson, E. J.; Liu, D.
Y.; Mei, J.; Dyer, A. L.; Reynolds, J. R. Adv Mater 2010, 22,
4949–4953; (b) Aubert, P. H.; Argun, A. A.; Cirpan, A.; Tanner,
D. B.; Reynolds, J. R. Chem Mater 2004, 16, 2386–2393; (c) Son-
mez, G.; Meng, H.; Zhang, Q.; Wudl, F. Adv Funct Mater 2003,
13, 726–731; (d) Sonmez, G.; Meng, H.; Wudl, F. Chem Mater
2004, 16, 574–580.
CONCLUSIONS
6 (a) Huang, Q.; Lu, G.; Shen, H. M.; Chung, M.; Ong, C. N.
Med Res Rev 2007, 27, 609–630; (b) Gheeya, J.; Johansson, P.;
Chen, Q. R.; Dexheimer, T.; Metaferia, B.; Song, Y. K.; Wei, J.
S.; He, J.; Pommier, Y.; Khan, J. Cancer Lett 2010, 293,
124–131; (c) Kamiya, K.; Hamabe, W.; Tokuyama, S.; Hirano, K.;
Satake, T.; Kumamoto, Y. Y.; Yoshida, H.; Mizushina, Y. Food
Chem 2010, 118, 725–730; (d) Luzzati, S.; Scharber, M.; Catel-
lani, M.; Giacalone, F.; Segura, J. L.; Martin, N.; Neugebauer,
H.; Sariciftci, N. S. J Phys Chem B 2006, 110, 5351–5358; (e)
Go´ mez, R.; Blanco, R.; Veldman, D.; Segura, J.; Janssen, R. J
Phys Chem B 2008, 112, 4953–4960; (f) Wan, J.; Ferreira, A.;
Xia, W.; Chow, C. H.; Takechi, K.; Kamat, P. V.; Jones, G.; Vul-
lev, V. I. J Photochem Photobiol, A 2008, 197, 364–374; (g)
Huang, Y. M.; Zhou, F. F.; Deng, Y.; Zhai, B. G. Solid State
Ionics 2008, 179, 1305–1309; (h) Yamamoto, T.; Koizumi, T. A.
Polymer 2007, 48, 5449–5472.
A novel series of electrochromic aromatic polyamides with
TPA and AQ units were readily prepared via the low-temper-
ature solution polycondensation. In addition to high Tg, ther-
mal stability, and good solubility, all the obtained polymers
reveal valuable electrochromic characteristics such as high
contrast ratio and low switching times. Thus, these charac-
teristics suggest that the introduction of reduction active
anthraquinone group into the polymer side chain could pro-
vide the prepared polyamide as potential anodically and
cathodically coloring materials.
The authors are grateful to the National Science Council of the
Republic of China for the financial support of this work. C. W. Lu
at the Instrumentation Center, National Taiwan University, for
CHNS (EA) analysis experiments and C. H. Ho at the Instrumen-
tation Center, Department of Chemistry, National Taiwan Nor-
mal University, for the measurement of 500 MHz NMR
spectrometer are also acknowledged.
7 (a) Sui.B.; Fu. X.
J Solid State Electrochem 2009, 13,
1889–1895; (b) Shamsipur, M.; Siroueinejad, A.; Hemmateene-
jad, B.; Abbaspour, A.; Sharghi, H.; Alizadeh, K.; Arshad, S.
J Electroanal Chem 2007, 600, 345–358.
8 Yamamoto, T.; Muramatsu, Y.; Lee, B. L.; Kokubo, H.; Sasaki,
S.; Hasegawa, M.; Yagi, T.; Kubota, K. Chem Mater 2003, 15,
4384–4393.
REFERENCES AND NOTES
9 (a) Thelakkat, M. Macromol Mater Eng 2002, 287, 442–461;
(b) Shirota, Y. J Mater Chem 2005, 15, 75–93; (c) Shirota, Y.;
Kageyama, H. Chem Rev 2007, 107, 953–1010; (d) Kuorosawa,
T.; Chueh, C. C.; Liu, C. L.; Higashihara, T.; Ueda, M.; Chen, W.
C. Macromolecules 2010, 43, 1236–1244.
1 (a) Monk, P. M. S.; Mortimer, R. J.; Rosseinsky, D. R. Electro-
chromism and Electrochromic Devices; Cambridge University
Press: Cambridge, UK, 2007; (b) Mortimer, R. J Chem Soc Rev
1997, 26, 147–156; (c) Rosseinsky, D. R.; Mortimer, R. J. Adv
Mater 2001, 13, 783–793; (d) Somani, P. R.; Radhakrishnan, S.
Mater Chem Phys 2003, 77, 117–133; (e) Liu, S.; Kurth, D. G.;
Mohwald, H.; Volkmer, D. Adv Mater 2002, 14, 225–228; (f)
Zhang, T.; Liu, S.; Kurth, D. G.; Faul, C. F. J Adv Funct Mater 2009,
19, 642–652; (g) Maier, A.; Rabindranath, A. R.; Tieke, B. Adv
Mater 2009, 21, 959–963; (h) Motiei, L.; Lahav, M.; Freeman, D.;
van der Boom, M. E. J Am Chem Soc 2009, 131, 3468–3469; (i)
Beaujuge, P. M.; Reynolds, J. R. Chem Rev 2010, 110, 268–320.
10 (a) Oishi, Y.; Ishida, M.; Kakimoto, M. A.; Imai, Y.; Kurosaki,
T. J Polym Sci Part A: Polym Chem 1992, 30, 1027–1035; (b)
Liou, G. S.; Hsiao, S. H.; Ishida, M.; Kakimoto, M. A.; Imai, Y. J
Polym Sci Part A: Polym Chem 2002, 40, 3815–3822; (c) Leung,
M. K.; Chou, M. Y.; Su, Y. O.; Chiang, C. L.; Chen, H. L.; Yang,
C. F.; Yang, C. C.; Lin, C. C.; Chen, H. T. Org Lett 2003, 5,
839–842; (d) Chou, M. Y.; Leung, M. K.; Su, Y. O.; Chiang, C. L.;
Lin, C. C.; Liu, J. H.; Kuo, C. K.; Mou, C. Y. Chem Mater 2004,
16, 654–661; (e) Otero, L.; Sereno, L.; Fungo, F.; Liao, Y. L.; Lin,
C. Y.; Wong, K. T. Chem Mater 2006, 18, 3495–3502.
2 (a) Green, M. Chem Ind 1996, 17, 641–644; (b) Bach, U.; Corr,
D.; Lupo, D.; Pichot, F.; Ryan, M. Adv Mater 2002, 14, 845–848;
(c) Ma, C.; Taya, M.; Xu, C. Polym Eng Sci 2008, 48,
2224–2228; (d) Beaupre, S.; Breton, A. C.; Dumas, J.; Leclerc,
M. Chem Mater 2009, 21, 1504–1513.
11 (a) Cheng, S. H.; Hsiao, S. H.; Su, T. H.; Liou, G. S. Macro-
molecules 2005, 38, 307–316; (b) Su, T. H.; Hsiao, S. H.; Liou,
G. S. J Polym Sci Part A: Polym Chem 2005, 43, 2085–2098.
3 (a) Rose, T. L.; D’Antonio, S.; Jillson, M. H.; Kon, A. B.;
Suresh, R.; Wang, F. Synth Met 1997, 85, 1439–1440; (b)
Franke, E. B.; Trimble, C. L.; Hale, J. S.; Schubert, M.; Woollam,
12 (a) Chang, C. W.; Liou, G. S.; Hsiao, S. H. J Mater Chem
2007, 17, 1007–1015; (b) Liou, G. S.; Chang, C. W.
68
JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY 2012, 50, 61–69