phosphine oxides. A significant advantage of the latter is that
sodium borohydride will not reduce any of the oxide regenerated
as side-product, which is not the case if, e.g. LAH is used. This
holds out promise of being a mild and reliable stereospecific
variant. We think therefore that together these two borohydride
methods may prove to be the method of choice for this once
recalcitrant reaction.
M. J. Sabacky, G. L. Bachman and D. J. Weinkauff, J. Am. Chem.
Soc., 1977, 99, 5946; D. Valentine Jr., J. F. Blount and K. Toth,
J. Org. Chem., 1980, 45, 3691; L. D. Quin, K. C. Caster,
J. C. Kislaus and K. A. Masch, J. Am. Chem. Soc., 1984,
106, 7021; K. M. Pietrusiewicz and M. Zablocka, Chem. Rev.,
1994, 94, 1375.
6 Comment: P-selenides/sulfides can be reduced stereospecifically
with hydride: W. J. Stec, A. Okruszek and J. Michalski, Angew.
Chem., Int. Ed. Engl., 1971, 10, 494; R. Luckenbach, Tetrahedron
Lett., 1971, 12, 2177.
7 S. Gladiali, A. Dore, D. Fabbri, S. Medici, G. Pirri and
S. Pulacchini, Eur. J. Org. Chem., 2000, 2861.
8 N. J. Kerrigan, E. C. Dunne, D. Cunningham, P. McArdle,
K. Gilligan and D. G. Gilheany, Tetrahedron Lett., 2003,
44, 8461; L. J. Higham, E. F. Clarke, H. Muller-Bunz and
¨
D. G. Gilheany, J. Organomet. Chem., 2005, 690, 211;
We thank sincerely Science Foundation Ireland (SFI) for
funding this chemistry under Grant RFP/08/CHE1251. We
are also grateful to UCD Centre for Synthesis and Chemical
Biology (CSCB) and the UCD School of Chemistry and
Chemical Biology for access to their extensive analysis facilities
and to Celtic Catalysts Ltd. and Luka Senica for gifting
enantioenriched phosphine oxides. DGG also thanks University
College Dublin for a President’s Research Fellowship, held
partly in Stanford University in the Laboratory of Professor
James Collman.
E. F. Clarke, E. Rafter, H. Muller-Bunz, L. J. Higham and
¨
D. G. Gilheany, J. Organomet. Chem., 2011, DOI: 10.1016/
j.jorganchem.2011.08.010.
9 D. Gatineau, L. Giordano and G. Buono, J. Am. Chem. Soc., 2011,
133, 10728.
10 (a) S. Juge, M. Stephan, J. A. Laffitte and J. P. Genet, Tetrahedron
Lett., 1990, 31, 6357; (b) H. Yang, N. Lugan and R. Mathieu,
Organometallics, 1997, 16, 2089; (c) L. McKinstry and
T. Livinghouse, Tetrahedron Lett., 1994, 35, 9319;
(d) L. McKinstry and T. Livinghouse, Tetrahedron, 1994,
50, 6145; (e) J. Uziel, C. Darcel, D. Moulin, C. Bauduin and
S. Juge, Tetrahedron: Asymmetry, 2001, 12, 1441;
(f) M. V. Overschelde, E. Vervecken, S. G. Modha, S. Cogen, E.
V. D. Eycken and J. V. D. Eycken, Tetrahedron, 2009, 65, 6410.
11 A. Staubitz, A. P. M. Robertson, M. E. Sloan and I. Manners,
Chem. Rev., 2010, 110, 4023.
Notes and references
1 (a) L. Maier, in Organic Phosphorus Compounds, ed. L. Maier and
G. M. Kosolapoff, Wiley-Interscience, New York, vol. 1, 1972,
ch. 1, pp. 1–226; (b) P. Beck, in Organic Phosphorus Compounds, ed.
L. Maier and G. M. Kosolapoff, Wiley-Interscience, New York, vol.
2, 1972, ch. 4, pp. 189–508; (c) D. G. Gilheany and C. M. Mitchell, in
The Chemistry of Organophosphorus Compounds, ed. F. R. Hartley,
Wiley-Interscience: Chicester, vol. 1, 1990, ch. 7, pp. 151–190;
(d) M. J. Gallagher, in The Chemistry of Organophosphorus Com-
pounds, ed. F. R. Hartley, Wiley-Interscience: Chicester, vol. 2, 1992,
ch. 2, pp. 53–76.
12 J. McNulty and Y. Zhou, Tetrahedron Lett., 2004, 45, 407.
13 D. G. Gilheany, Chem. Rev., 1994, 94, 1339.
14 (a) S. M. Godfrey, C. A. McAuliffe, R. G. Pritchard and
J. M. Sheffield, Chem. Commun., 1996, 2521; (b) S. M. Godfrey,
C. A. McAuliffe, R. G. Pritchard and J. M. Sheffield, Chem.
Commun., 1998, 921; (c) S. M. Godfrey, A. Hinchliffe and
A. Mkadmh, THEOCHEM, 2005, 719, 85; (d) A. D. Beveridge,
G. S. Harris and F. Inglis, J. Chem. Soc. A, 1966, 520; (e) M. A. H.
A. Al-Juboori, P. N. Gates and A. S. Muir, J. Chem. Soc., Chem.
Commun., 1991, 1270; (f) N. C. Gonnella, C. Busacca, S. Campbell,
M. Eriksson, N. Grinberg, T. Bartholomeyzik, S. Ma and
D. L. Norwood, Magn. Reson. Chem., 2009, 47, 461.
2 Hydride reduction: (a) P. D. Henson, S. B. Ockrymiek and
J. Raymond E. Markham, J. Org. Chem., 1974, 39, 2296;
(b) T. Imamoto, T. Takeyama and T. Kusumoto, Chem. Lett., 1985,
1491; (c) T. Imamoto, T. Kusumoto, N. Suzuki and K. Sato, J. Am.
Chem. Soc., 1985, 107, 5301; (d) T. Imamoto, T. Oshiki, T. Onozawa,
T. Kusumoto and K. Sato, J. Am. Chem. Soc., 1990, 112, 5244;
(e) S. Griffin, L. Heath and P. Wyatt, Tetrahedron Lett., 1998,
39, 4405; (f) T. Imamoto, S. Kikuchi, T. Miura and Y. Wada, Org.
Lett., 2000, 3, 87; (g) G. Keglevich, M. Fekete, T. Chuluunbaatar,
A. Dobo, V. Harmatc and L. Toke, J. Chem. Soc., Perkin Trans. 1,
´
15 E. Bergin, C. T. O’Connor, S. B. Robinson, E. M. McGarrigle,
C. P. O’Mahony and D. G. Gilheany, J. Am. Chem. Soc., 2007,
129, 9566.
16 We will report shortly on our studies of this involvement.
17 We also found that these species could be generated with sulfuryl
chloride, methanesulfonyl chloride or thionyl chloride but oxalyl
chloride was more convenient on a laboratory scale. (See ESIw).
18 (a) M. Masaki and K. Fukui, Chem. Lett., 1977, 151; (b) K. Fukui
and N. Kakeya, U. S. Patent 4, 1981, 301.
2000, 4451; (h) G. Keglevich, T. Chuluunbaatar, K. Ludanyib and
L. Tokec, Tetrahedron, 2000, 56, 1; (i) M. Stankevic and
K. M. Pietrusiewicz, Synlett, 2003, 1012; (j) C. A. Busacca,
J. C. Lorenz, N. Grinberg, N. Haddad, M. Hrapchak, B. Latli,
H. Lee, P. Sabila, A. Saha, M. Sarvestani, S. Shen, R. Varsolona,
X. Wei and C. H. Senanayake, Org. Lett., 2005, 7, 4277;
(k) C. A. Busacca, R. Raju, N. Grinberg, N. Haddad, P. James-Jones,
H. Lee, J. C. Lorenz, A. Saha and C. H. Senanayake, J. Org. Chem.,
2008, 73, 1524.
19 (a) T. Yano, M. Kuroboshi and H. Tanaka, Tetrahedron Lett.,
2010, 51, 698; (b) T. Yano, M. Hoshino, M. Kuroboshi and
H. Tanaka, Synlett, 2010, 801.
20 R. M. Denton, J. An and B. Adeniran, Chem. Commun., 2010,
46, 3025; R. M. Denton, J. An, B. Adeniran, A. J. Blake, W. Lewis
and A. M. Poulton, J. Org. Chem., 2011, 76, 6749.
21 Another recent report of hydride reduction of phosphonium salts
with viable leaving groups; K. M. Pietrusiewicz, K. Dziuba,
M. Lubanska, 18th International Conference on Phosphorus
Chemistry, Wroclaw, Poland, July 11–15, 2010, Abstract No
S.01.08.
3 Electrochemical reduction: J. M. Saveant and S. K. Binh, J. Org.
Chem., 1977, 42, 1242.
4 Silane reduction: (a) L. Horner and W. D. Balzer, Tetrahedron
Lett., 1965, 6, 1157; (b) N. L. Bauld and F. Farr, J. Am. Chem.
Soc., 1969, 91, 2788; (c) R. Tang and K. Mislow, J. Am. Chem.
Soc., 1969, 91, 5645; (d) K. Naumann, G. Zon and K. Mislow,
J. Am. Chem. Soc., 1969, 91, 7012; (e) K. L. Marsi, J. Org. Chem.,
1974, 39, 265; (f) T. Coumbe, N. J. Lawrence and F. Muhammad,
Tetrahedron Lett., 1994, 35, 625; (g) H.-C. Wu, J.-Ql. Yu and
J. B. Spencer, Org. Lett., 2004, 6, 4675–4678; (h) M. Berthod,
A. Favre-Reguillon, J. Mohamad, G. Mignani, G. Docherty and
´
22 See ESIw for details of reactions of enantiomerically enriched
phosphine oxides with sodium borohydride after treatment with
oxalyl chloride, sulfuryl chloride, thionyl chloride or methane
sulfonylchloride with different temperature and solvent systems.
23 J. Omelanczuk and M. Mikolajczyk, J. Am. Chem. Soc., 1979,
101, 7292.
M. Lemaire, Synlett, 2007, 1545; (i) C. Petit, A. Favre-Reguillon,
B. Albela, L. Bonneviot, G. Mignani and M. Lemaire, Organo-
metallics, 2009, 28, 6379; (j) C. J. O’Brien, J. L. Tellez, Z. S. Nixon,
L. J. Kang, A. L. Carter, S. R. Kunkel, K. C. Przeworski and
G. A. Chass, Angew. Chem., Int. Ed., 2009, 48, 6836.
5 K. Naumann, G. Zon and K. Mislow, J. Am. Chem. Soc., 1969,
91, 2788; G. Zon, K. E. DeBruin, K. Naumann and K. Mislow,
J. Am. Chem. Soc., 1969, 91, 7023; B. D. Vineyard, W. S. Knowles,
24 (a) D. Crich and H. Dyker, Tetrahedron Lett., 1989, 30, 475;
(b) A. Rhomberg and P. Tavs, Monatsh. Chem., 1967, 98, 105.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 817–819 819