absorption studies. Excitation of the ADP entity of the dyad
resulted in the electron transfer from the singlet excited ADP
ꢀ
to the attached C60 forming ADPꢀ+–C60 ꢁ. Production of the
triplet ADP state via charge recombination of ADP–C60 is the
likely pathway, taking into consideration that the energy of
ꢀ
ADPꢀ+–C60 ꢁ is significantly higher than the triplet ADP. The
present study opens up a venue for utilization of difluoroborane
chelated azadipyrromethene in light energy harvesting donor–
acceptor systems.
Support by the National Science Foundation (Grant No. CHE-
0804015 and CHE-1110942 to FD), Grant-in-Aid (No. 20108010),
and the Global COE (center of excellence) program of Osaka
University from MEXT, Japan, and NRF/MEST of Korea
through WCU (R31-2008-000-10010-0) and GRL (2010-00353)
programs is acknowledged.
Fig. 4 Femtosecond transient absorption spectra of the ADP–C60
dyad in deaerated benzonitrile. lex = 480 nm.
Notes and references
occurs in spite of the slightly positive driving force of electron
transfer (0.07 eV) and desirable short distance between the ADP
1 (a) M. R. Wasielewski, Acc. Chem. Res., 2009, 42, 1910;
(b) D. Gust and T. A. Moore, in The Porphyrin Handbook, ed.
K. M. Kadish, K. M. Smith and R. Guilard, Academic Press,
Burlington, MA, 2000, vol. 8, pp. 153–190; (c) S. Fukuzumi, Org.
Biomol. Chem., 2003, 1, 609; (d) M. E. El-Khouly, O. Ito,
P. M. Smith and F. D’Souza, J. Photochem. Photobiol., C, 2004,
and C60 moieties. The energy level of charge separated state,
ꢀ
C60 ꢁ–ADPꢀ+ (1.84 eV), is significantly higher than the low-lying
triplet state of ADP. In such a case the charge recombination is
expected to afford the triplet excited state of ADP (3ADP*).
The formation of 3ADP* was confirmed by the complemen-
tary nanosecond transient spectra in the microsecond region as
shown in Fig. 5, where the absorption bands due to the triplet
3ADP* are clearly observed in the visible region with a
maximum at 430 nm and also in the NIR region with a
maximum at 850 nm. The triplet ADP decayed to the ground
state with a rate of 1.2 ꢂ 104 sꢁ1, slightly faster than the ADP
5, 79; (e) E. M. Perez and N. Martın, Chem. Soc. Rev., 2008,
´ ´
37, 1512.
2 (a) R. Chitta and F. D’Souza, J. Mater. Chem., 2008, 18, 1440;
(b) S. Fukuzumi, Phys. Chem. Chem. Phys., 2008, 10, 2283;
(c) S. Fukuzumi and T. Kojima, J. Mater. Chem., 2008,
18, 1427; (d) F. D’Souza and O. Ito, Chem. Commun., 2009,
4913; (e) V. Sgobba and D. M. Guldi, Chem. Soc. Rev., 2009,
38, 165; (f) S. Fukuzumi, T. Honda, K. Ohkubo and T. Kojima,
Dalton Trans., 2009, 3880.
3 (a) H. Imahori, T. Umeyama and S. Ito, Acc. Chem. Res., 2009,
42, 1809; (b) P. V. Kamat, J. Phys. Chem. C, 2007, 111, 2834;
(c) B. E. Hardin, E. T. Hoke, P. B. Armstrong, J.-H. Yum,
P. Comte, T. Torres, J. M. J. Frechet, M. K. Nazeeruddin,
control compound, being 4.5 ꢂ 103 sꢁ1
.
In summary, utilization of BF2 chelated azadipyrromethene,
a structural analog of BF2-chelated dipyrromethene, having
absorption and emission maxima well into the red region, in
building donor–acceptor dyads is explored. The target molecule,
ADP–C60 dyad, was synthesized via a multi-step synthetic
procedure. Computational studies predicted the ADP to be
electron deficient, while electrochemical studies proved that
this is indeed the case, where the ADP macrocycle is electron
deficient by 250 mV compared to fullerene. Photoinduced
electron transfer was observed from femtosecond transient
M. Gratzel and M. D. McGehee, Nat. Photonics, 2009, 3, 667;
¨
(d) T. M. Figueira-Duarte, A. Gegout and J.-F. Nierengarten,
Chem. Commun., 2007, 109.
4 F. D’Souza, R. Chitta, K. Ohkubo, M. Tasior, N. K. Subbaiyan,
M. E. Zandler, M. K. Rogachi, D. T. Gryko and S. Fukuzumi,
J. Am. Chem. Soc., 2008, 130, 14263.
5 (a) D. Gonzalez-Rodriguez, T. Torres, D. M. Guldi, J. Rivera,
M. A. Herranz and L. Echegoyen, J. Am. Chem. Soc., 2004,
126, 6301; (b) F. D’Souza, P. M. Smith, L. Rogers,
M. E. Zandler, D.-M. S. Islam, Y. Araki and O. Ito, Inorg. Chem.,
2006, 45, 5057; (c) A. Harriman, J. P. Rostron, M. Cesario,
G. Ulrich and R. Ziessel, J. Phys. Chem. A, 2006, 110, 7994;
(d) M. Fujitsuka, H. Shimakoshi, S. Tojo, L. Cheng, D. Maeda,
Y. Hisaeda and T. Majima, J. Phys. Chem. A, 2009, 113, 3330.
6 (a) A. Loudet and K. Burgess, Chem. Rev., 2007, 107, 4891;
(b) G. Ulrich, R. Ziessel and A. Harriman, Angew. Chem., Int.
Ed., 2007, 46, 2; (c) A. C. Benniston and G. Copley, Phys. Chem.
Chem. Phys., 2009, 11, 4124.
7 (a) J. Killoran, L. Allen, J. F. Gallagher, W. M. Gallagher and
D. F. O’Shea, Chem. Commun., 2002, 1862; (b) A. Gorman,
J. Killoran, C. O’Shea, T. Kenna, W. M. Gallagher and
D. F. O’Shea, J. Am. Chem. Soc., 2004, 126, 10619.
8 (a) K. Flavin, K. Lawrence, J. Bartelmess, M. Tasior, C. Navio,
C. Bittencourt, D. F. O’Shea, D. M. Guldi and S. Giordani, ACS
Nano, 2011, 5, 1198; (b) A. N. Amin, M. E. El-Khouly,
N. K. Subbaiyan, M. E. Zandler, M. Supur, S. Fukuzumi and
F. D’Souza, J. Phys. Chem. A, 2011, 115, 9810.
9 M. Maggini, G. Scorrano and M. Prato, J. Am. Chem. Soc., 1993,
115, 9798.
10 Gaussian 03, Gaussian Inc., Pittsburgh, PA, 2003.
11 ꢁDGCR = e(Eox ꢁ Ered) + DGS; ꢁDGCS = DE00 ꢁ (ꢁDGCR),
where DE00 and DGS are the energy of 1ADP* and the static
energy, respectively.
Fig. 5 Nanosecond transient absorption spectra of the ADP–C60
dyad in deaerated benzonitrile. lex = 460 nm.
c
208 Chem. Commun., 2012, 48, 206–208
This journal is The Royal Society of Chemistry 2012