M.-M. Li et al. / Tetrahedron Letters 53 (2012) 317–319
319
iodides, but also expands the application of iron in synthetic chem-
istry. Further investigation of the detailed reaction mechanism and
synthetic applications are ongoing.
Acknowledgment
We are grateful for the financial support from the National Nat-
ural Science Foundation of China (20802072).
Supplementary data
Supplementary data associated with this article can be found, in
Scheme 1. Postulated reaction pathways.
in this process, leading to the corresponding products in moderate
yields (3q and 3r). Nevertheless, when aliphatic alkynes were used
as the substrates, none of the desired products were detected.
In the course of our investigation on the mechanism of this
reaction, dimeric ether 4a was observed and isolated together with
the product 3a when the reaction of benzhydrol 1a and phenyl-
acetylene 2a was conducted in the presence of iron powder, I2,
and NaI (Eq. 3). Furthermore, the product 3a was obtained in an
81% isolated yield when a separate experiment was performed be-
tween dimeric ether 4a and phenylacetylene 2a under the standard
conditions (Eq. 4). These results suggested that dimeric ether 4
might be an intermediate in this iodoalkylation reaction. Neverthe-
less, the direct iodoalkylation of alkynes with alcohols and iodinat-
ing reagents could not be excluded at present stage.11c–e
References and notes
1. (a) Dounay, A. B.; Overman, L. E. Chem. Rev. 2003, 103, 2945; (b) Nicolaou, K. C.;
Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4442; (c) Ma, D. W.; Cai,
Q. Acc. Chem. Res. 2008, 41, 1450; (d) König, C. M.; Gebhardt, B.; Schleth, C.;
Dauber, M.; Koert, U. Org. Lett. 2009, 11, 2728; (e) Negishi, E. I.; Anastasia, L.
Chem. Rev. 2003, 103, 1979.
2. (a) Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009; (b) Negishi, E.
I.; Copéret, C.; Ma, S. M.; Liou, S. Y.; Liu, F. Chem. Rev. 1996, 96, 365; (c) Miyaura,
N.; Suzuki, A. Chem. Rev. 1995, 95, 2457; (d) Espinet, P.; Echavarren, A. M.
Angew. Chem., Int. Ed. 2004, 43, 4704.
3. (a) Kropp, P. J.; Daus, K. A.; Crawford, S. D.; Tubergen, M. W.; Kepler, K. D.; Craig,
S. L.; Wilson, V. P. J. Am. Chem. Soc. 1990, 112, 7433; (b) Kropp, P. J.; Crawford, S.
D. J. Org. Chem. 1994, 59, 3102; (c) Campos, P. J.; García, B.; Rodríguez, M. A.
Tetrahedron Lett. 2002, 43, 6111; (d) Kawaguchi, S. I.; Ogawa, A. Org. Lett. 2010,
12, 1893.
4. (a) Ma, S. M.; Li, L. T.; Xie, H. X. J. Org. Chem. 1999, 64, 5325; (b) Lü, B.; Jiang, X.
P.; Fu, C. L.; Ma, S. M. J. Org. Chem. 2009, 74, 438; (c) Barluenga, J.; Campos-
Gómez, E.; Minatti, A.; Rodríguez, D.; González, J. M. Chem. Eur. J. 2009, 15,
8946; (d) Ma, S. M.; Wei, Q. J. Org. Chem. 1999, 64, 1026.
5. (a) Chen, S. F.; Wang, J. B. J. Org. Chem. 2007, 72, 4993; (b) Yu, M.; Zhang, G. Z.;
Zhang, L. M. Tetrahedron 2009, 65, 1846; (c) Ye, L. W.; Zhang, L. M. Org. Lett.
2009, 11, 3646; (d) Wang, D. W.; Ye, X. H.; Shi, X. D. Org. Lett. 2010, 12, 2088.
6. (a) Takahashi, T.; Kondakov, D. Y.; Xi, Z. F.; Suzuki, N. J. Am. Chem. Soc. 1995,
117, 5871; (b) Stüdemann, T.; Ibrahim-Ouali, M.; Knochel, P. Tetrahedron 1998,
54, 1299; (c) Takahashi, T.; Sun, W. H.; Xi, C. J.; Ubayama, H.; Xi, Z. F.
Tetrahedron 1998, 54, 715; (d) Nakajima, R.; Delas, C.; Takayama, Y.; Sato, F.
Angew. Chem., Int. Ed. 2002, 41, 3023; (e) Xi, Z. F.; Zhang, W. X.; Takahashi, T.
Tetrahedron Lett. 2004, 45, 2427; (f) Xi, Z. F.; Zhang, W. X.; Song, Z. Y.; Zheng, W.
X.; Kong, F. Z.; Takahashi, T. J. Org. Chem. 2005, 70, 8785.
7. (a) Sun, J. W.; Kozmin, S. A. J. Am. Chem. Soc. 2005, 127, 13512; (b) Pradal, A.;
Nasr, A.; Toullec, P. Y.; Michelet, V. Org. Lett. 2010, 12, 5222; (c) Worlikar, S. A.;
Kesharwani, T.; Yao, T. L.; Larock, R. C. J. Org. Chem. 2007, 72, 1347; (d)
Barluenga, J.; Palomas, D.; Rubio, E.; González, J. M. Org. Lett. 2007, 9, 2823.
8. (a) Jennings, M. P.; Cork, E. A.; Ramachandran, P. V. J. Org. Chem. 2000, 65, 8763;
(b) Fang, X.; Yang, X. Y.; Yang, X. J.; Mao, S. J.; Wang, Z. H.; Chen, G. R.; Wu, F. H.
Tetrahedron 2007, 63, 10684; (c) Tsuchii, K.; Imura, M.; Kamada, N.; Hirao, T.;
Ogawa, A. J. Org. Chem. 2004, 69, 6658.
ð3Þ
ð4Þ
Although the detailed mechanism is unclear, based on the
above results and previous studies,11 we proposed two postulated
pathways of this reaction shown in Scheme 1. One pathway was a
direct alkylation of alkyne 2 with alcohol 1 to generate alkenyl cat-
ion 5, which was attacked by iodide ion to form alkenyl iodides 3.
In another probable pathway, the starting alcohol 1 was firstly con-
verted to the corresponding dimeric ether 4. Then, the alkylation of
alkyne 2 by dimeric ether 4 was proceeded to give alkenyl cation 5.
Finally, the iodination of alkenyl cation 5 delivered the desired
product 3.
In summary, we have successfully developed a convenient and
efficient method for the synthesis of alkenyl iodides through direct
coupling of various alcohols with alkynes in the presence of iron
powder, I2, and NaI under mild conditions. The present protocol
not only provides a green and attractive approach to alkenyl
9. (a) Yadav, J. S.; Reddy, B. V. S.; Gupta, M. K.; Eeshwaraiah, B. Synthesis 2005, 57;
(b) Lee, S. I.; Hwang, G. S.; Ryu, D. H. Synlett 2007, 59; (c) Yadav, J. S.; Reddy, B.
V. S.; Gupta, M. K.; Pandey, S. K. J. Mol. Catal. A: Chem. 2007, 264, 309.
10. (a) Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev. 2004, 104, 6217; (b) Sherry,
B. D.; Fürstner, A. Acc. Chem. Res. 2008, 41, 1500; (c) Correa, A.; Mancheñ, O. G.;
Bolm, C. Chem. Soc. Rev. 2008, 37, 1108; (d) Bauer, E. B. Curr. Org. Chem. 2008,
12, 1341; (e) Fürstner, A.; Martin, R. Chem. Lett. 2005, 34, 624.
11. (a) Biswas, S.; Maiti, S.; Jana, U. Eur. J. Org. Chem. 2009, 2354; (b) Liu, Z. Q.;
Wang, J. G.; Han, J.; Zhao, Y. K.; Zhou, B. Tetrahedron Lett. 2009, 50, 1240; (c)
Ren, K.; Wang, M.; Wang, L. Eur. J. Org. Chem. 2010, 565; (d) Yasuda, M.; Somyo,
T.; Baba, A. Angew. Chem., Int. Ed. 2006, 45, 793; (e) Sanz, R.; Miguel, D.;
Martínez, A.; Álvarez-Gutiérrez, J. M.; Rodríguez, F. Org. Lett. 2007, 9, 2027.
12. Yoon, K. B.; Kochi, J. K. Inorg. Chem. 1990, 29, 869.
13. The example of using DBE as solvent, see: Ren, K.; Wang, M.; Wang, L. Eur. J.
Org. Chem. 2010, 565–571.