Journal of the American Chemical Society
Communication
Synth. Catal. 2004, 346, 432. Also see: (f) Gonzal
Lopez, C.; Marco-Contelles, J.; Nieto Faza, O.; Soriano, E.; de Lera, A.
R. J. Org. Chem. 2009, 74, 2982.
́ ́
ez Perez, A.; Silva
Rhodia Chimie Fine (Dr. F. Metz) for generous gifts of HNTf2
and HOTf. We deeply appreciate the generous financial
support from the Ecole Polytechnique (C.G., Y.O., and S.K.),
the Carlsberg Foundation, the Danish National Research
Foundation, H. Lundbeck A/S, the OChem Graduate School,
and Aarhus University (S.K.).
́
(7) Mezailles, N.; Ricard, L.; Gagosz, F. Org. Lett. 2005, 7, 4133.
(8) Ricard, L.; Gagosz, F. Organometallics 2007, 26, 4704.
(9) A furan was also obtained with these Au catalysts (15−70%) (see ref 6).
(10) 14 was easily synthesized from Cu2O and NHTf2(aq) in
CH3CN by adapting the procedure described in: Kubas, G. J. Inorg.
Synth. 1979, 19, 90 (see the SI for more details). For a seminal use of
14 in cycloisomerization reactions, see: Fehr, C.; Vuagnoux, M.; Buzas,
A.; Arpagaus, J.; Sommer, H. Chem.Eur. J. 2011, 17, 6214.
(11) Only degradation was observed when acetonitrile was replaced
with chloroform.
(12) Other copper(II) or iron(III) catalysts (10 mol %) gave lower
yields and longer reaction times: [CuCl2] 4 h, 37%; [CuCl2, 2AgBF4]
18 h, 78%; [CuCl2, 2AgOTf] 24 h, 71%; [Cu2O] 24 h, 0%; [FeCl3,
3AgOTf] 24 h, 17%.
REFERENCES
■
(1) For recent reviews of gold catalysis, see: (a) Krause, N.; Winter, C.
Chem. Rev. 2011, 111, 1994. (b) Aubert, C.; Fensterbank, L.; Garcia, P.;
Malacria, M.; Simonneau, A. Chem. Rev. 2011, 111, 1954. (c) Hashmi,
A. S. K. Angew. Chem., Int. Ed. 2010, 49, 5232. (d) Furstner, A. Chem.
̈
Soc. Rev. 2009, 38, 3208. (e) Michelet, V.; Toullec, P. Y.; Genet
̂
, J. P.
Angew. Chem., Int. Ed. 2008, 47, 4268. (f) Jimenez-Nunez, E.;
́
́
̃
Echavarren, A. M. Chem. Rev. 2008, 108, 3326. (g) Li, Z.; Brower, C.;
He, C. Chem. Rev. 2008, 108, 3239. (h) Arcadi, A. Chem. Rev. 2008, 108,
3266. (i) Gorin, D. J.; Toste, F. D. Chem. Rev. 2008, 108, 3351.
(13) Only degradation was observed.
(14) Other pyridine oxides such as 4-phenyl- or 4-methoxypyridine
oxide gave lower yields and longer reaction times. No reaction took
place when dimethyl sulfoxide was used as the solvent or diphenyl
sulfoxide (2 equiv) as the oxidizing agent.
(j) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180. (k) Furstner, A.;
̈
Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410.
(2) For a recent review, see: Xiao, J.; Li, X. Angew. Chem., Int. Ed.
2011, 50, 7226.
(15) Monitoring the reaction of 15l by 1H NMR spectroscopy
showed that the cis and trans isomers were consumed at the same rate.
A difference was observed for the 1:1.25 diastereoisomeric mixture
15g: one of the diastereoisomers was completely consumed in 4 h,
while 8 h was required for the second one.
(3) For examples of oxo functionalization of alkynes via an α-oxo
gold carbene intermediate, see: With amine oxides: (a) Cui, L.; Peng,
Y.; Zhang, L. J. Am. Chem. Soc. 2009, 131, 8394. (b) Cui, L.; Zhang,
G.; Peng, Y.; Zhang, L. Org. Lett. 2009, 11, 1125. With pyridine oxides:
(c) Qian, D.; Zhang, J. Chem. Commun. 2011, 47, 11152. (d) Ye, L.;
He, W.; Zhang, L. Angew. Chem., Int. Ed. 2011, 50, 3236. (e) He, W.;
Li, C.; Zhang, L. J. Am. Chem. Soc. 2011, 133, 8482. (f) Ye, L.; He, W.;
Zhang, L. J. Am. Chem. Soc. 2010, 132, 8550. (g) Ye, L.; Cui, L.; Zhang,
G.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 3258. With nitrones: (h)
Yeom, H.; Lee, Y.; Jeong, J.; So, E.; Hwang, S.; Lee, J.; Lee, S.; Shin, S.
Angew. Chem., Int. Ed. 2010, 49, 1611. (i) Yeom, H. S.; Lee, J. E.; Shin, S.
Angew. Chem., Int. Ed. 2008, 47, 7040. (j) Mukherjee, A.; Dateer, R. B.;
Chaudhuri, R.; Bhunia, S.; Narayan Karad, S.; Liu, R.-S. J. Am. Chem. Soc.
2011, 133, 15372. With nitros: (k) Jadhav, A. M.; Bhunia, S.; Liao,
H. Y.; Liu, R. S. J. Am. Chem. Soc. 2011, 133, 1769. (l) Asao, N.; Sato, K.;
Yamamoto, Y. Tetrahedron Lett. 2003, 44, 5675. With sulfoxides:
(m) Li, C.-W.; Pati, K.; Lin, G.-Y.; Hung, H.-H.; Liu, R.-S. Angew. Chem.,
Int. Ed. 2010, 49, 9891. (n) Shapiro, N. D.; Toste, F. D. J. Am. Chem.
Soc. 2007, 129, 4160. (o) Li, G.; Zhang, L. Angew. Chem., Int. Ed. 2007,
(16) Ibdah, M.; Azulay, Y.; Portnoy, V.; Wasserman, B.; Bar, E.; Meir,
A.; Burger, Y.; Hirschberg, J.; Schaffer, A. A.; Katzir, N.; Tadmor, Y.;
Lewinsohn, E. Phytochemistry 2006, 67, 1579.
(17) No reaction or degradation occurred with internal alkynes.
(18) Dual coordination of the catalyst was previously proposed for
Au- and Ag-catalyzed transformations of alkynyl oxiranes (see ref 6).
(19) No intermediate, and especially no allenic alcohol correspond-
ing to the protonated form of 19, was observed when the reaction was
monitored by 1H NMR spectroscopy. An allene-coordinated copper(I)
alkoxide has been recently proposed as an intermediate in another
Cu(I)-catalyzed transformation. See: Sai, M.; Yorimitsu, H.; Oshima,
K. Angew. Chem., Int. Ed. 2011, 50, 3294.
(20) Mukaiyama, S.; Inanaga, J.; Yamaguchi, M. Bull. Chem. Soc. Jpn.
1981, 54, 2221.
(21) The exact nature of the Cu(I) active species is not known, as the
pyridine oxide and the pyridine generated during the process could
bind to the metal center.
(22) A mechanism involving the formation of an allenylidene copper(I)
species via a copper(I) acetylide could be envisaged (see: Detz, R. J.;
Delville, M. M. E.; Hiemstra, H.; van Maarseveen, J. H. Angew. Chem., Int.
Ed. 2008, 47, 3777 ). However, while such a mechanism cannot be ruled
out, it is not supported by an experiment performed in the presence
DIPEA [an additional base that should favor the formation of a
copper(I) acetylide]. In this case, the rate of the reaction was indeed
extremely reduced. Moreover, this mechanism does not easily explain
the competitive formation of dihydrofuranaldehydes when alkynyl
oxetanes are used as substrates.
́
46, 5156. From epoxides: (p) Hashmi, A. S. K.; Buhrle, M.; Salathe, R. J.;
̈
Bats, J. W. Adv. Synth. Catal. 2008, 350, 2059. (q) Lin, G.-Y.; Li, C.-W.;
Hung, S.-H.; Liu, R.-S. Org. Lett. 2008, 10, 5059.
(4) For recent contributions from our group, see: (a) Wetzel, A.;
Gagosz, F. Angew. Chem., Int. Ed. 2011, 50, 7354. (b) Kramer, S.;
Odabachian, Y.; Overgaard, J.; Rottlander, M.; Gagosz, F.; Skrydstrup,
̈
T. Angew. Chem., Int. Ed. 2011, 50, 5090. (c) Gronnier, C.; Odabachian,
Y.; Gagosz, F. Chem. Commun. 2011, 47, 218. (d) Bolte, B.; Odabachian,
Y.; Gagosz, F. J. Am. Chem. Soc. 2010, 132, 7294. (e) Jurberg, I. D.;
Odabachian, Y.; Gagosz, F. J. Am. Chem. Soc. 2010, 132, 3543.
(5) For a short selection of metal-mediated SN2′-type additions to
alkynyl oxiranes, see: With Cu: (a) Cu, H.; Deutsch, C.; Lipshutz, B.;
Krause, N. Angew. Chem., Int. Ed. 2007, 46, 1650. (b) Deutsch, C.;
(23) Compound 24 could not be converted into 23 under the
reaction conditions employed.
(24) Very similar results were obtained with AgNTf2.
(25) Surprisingly, the corresponding dihydrofuranaldehydes could
not be obtained when 29e and 29f were used as substrates.
(26) Cu(NCMe)4NTf2 was not able to catalyze the reaction of
alkynyl tetrahydrofuran 32. However, when IPrAuNTf2 was used, the
corresponding aldehyde was obtained in moderate yield.
Hoffmann-Roder, A.; Domke, A.; Krause, N. Synlett 2007, 737.
̈
(c) Dieter, R. K.; Chen, N.; Yu, H.; Nice, L. E.; Gore, V. K. J. Org.
́
Chem. 2005, 70, 2109. With Fe: (d) Furstner, A.; Mendez, M. Angew.
̈
Chem., Int. Ed. 2003, 42, 5355. With Rh: (e) Miura, T.; Shimada, M.;
Ku, S.-Y.; Tamai, T.; Murakami, M. Angew. Chem., Int. Ed. 2007, 46,
7101. (f) Miura, T.; Shimada, M.; de Mendoza, P.; Deutsch, C.;
Krause, N.; Murakami, M. J. Org. Chem. 2009, 74, 6050. With Pd:
́ ́
(g) Kjellgren, J.; Sunden, H.; Szabo, K. J. J. Am. Chem. Soc. 2005, 127,
1787. (h) Knight, J. G.; Ainge, S. W.; Baxter, C. A.; Eastman, T. P.;
Harwood, S. J. J. Chem. Soc., Perkin Trans. 1 2000, 3188.
(6) (a) Blanc, A.; Alix, A.; Weibel, J.-M.; Pale, P. Eur. J. Org. Chem.
2010, 1644. (b) Blanc, A.; Tenbrink, K.; Weibel, J.-M.; Pale, P. J. Org.
Chem. 2009, 74, 5342. (c) Blanc, A.; Tenbrink, K.; Weibel, J.-M.; Pale,
P. J. Org. Chem. 2009, 74, 4360. (d) Cordonnier, M.-C.; Blanc, A.;
Pale, P. Org. Lett. 2008, 10, 1569. (e) Hashmi, A. S. K.; Sinha, P. Adv.
831
dx.doi.org/10.1021/ja209866a | J. Am. Chem.Soc. 2012, 134, 828−831