2000
E. Altmann et al. / Bioorg. Med. Chem. Lett. 13 (2003) 1997–2001
0
Table 2. Inhibition of rh cathepsins K, L and S catalytic activity—Variations in P3/P1
Compd
R2
R1
h Cath Ka
h Cath Lb
h Cath Sc
IC50 (mM)
IC50 (mM)
IC50 (mM)
7a
7b
7c
7d
7e
7f
7g
7h
7i
Phenyl
CH3
CH3
CH3
CH3
0.490
0.372
0.044
0.419
0.009
0.15
<0.03 (67%)
<0.03 (52%)
0.13
0.32
0.07
0.58
0.47
1.55
0.48
0.53
0.66
3-Methylphenyl
4-Methylphenyl
3-Methoxyphenyl
4-Methoxyphenyl
4-Methoxyphenyl
4-Methoxyphenyl
4-Ethylphenyl
4-Ethylphenyl
1H-Indol-2-yl
CH3
0.80
0.58
0.75
0.03
1.3
0.09
CH2CH(CH3)2
CH2(C5H9)
CH3
CH2(C6H5)
CH3
<0.003 (71%)
<0.003 (56%)
<0.003 (80%)
<0.003 (72%)
<0.003
4.9
0.16
7j
7k
7l
7m
1H-Indol-2-yl
1H-Indol-2-yl
1H-Indol-2-yl
CH2CH(CH3)2
CH2(C5H9)
CH2(C6H5)
<0.003 (71%)
0.003
0.004
>10 (22%)
>10 (27%)
6.9
>10 (46%)
7.5
4.5
aInhibition of recombinant human (rh) cathepsin K activity in a fluoresence assay using 48 mM Cbz-Phe-Arg-AMC as substrate in 100 mM
NaH2PO4, 1 mM EDTA, 20 mM Tween 80, 2 mM DTT, pH 7.
bInhibition of rh cathepsin L activity using 3 mM Cbz-Phe-Arg-AMC as substrate in 100 mM NaOAc, 1 mM EDTA, 0.005% Brig 35, 1 mM DTT,
pH 5.5.
cInhibition of rh cathepsin S activity using 11 mM Cbz-Leu-Leu-Arg-AMC as substrate in 100 mM NaOAc, 1 mM EDTA, 0.01% Triton X-100, 1
mM DTT, pH 5.5. Data represent mean of 2 experiments performed in duplicate, individual data points in each experiment were within a 3-fold
range with each other.
inhibitory potency. Asexpected from modeling, the
introduction of a 1-methyl- piperidinyloxy, a dimethyl-
amino-, a pyrrolidinyl- or imidazolyl-ethoxy sub-
highly homologuescat0hepsinsL and S. The appropriate
combination of P3/P1 subunits results in highly potent
cathepsin K inhibitors with an excellent selectivity
profile.
0
stituent in the P1 -fragment resulted in significantly less
potent inhibitors( 1i–1l), most likely due to the polar
0
group which cannot adjust within the hydrophobic S1
pocket.
Acknowledgements
As illustrated by the results summarized in Table 2,
replacement of the Cbz group by appropriate acyl moi-
etiesafforded a esriesof highly potent cathepisn K
inhibitors( 7e–m). Replacement of the Cbz moiety by an
unsubstituted benzamide (1a!7a) led to a loss in activ-
ity and selectivity. Introduction of a meta substituent at
the benzamide moiety (7b, 7d) reversed the selectivity
profile in favour of cathepsins S and L. However, a
4-substituted benzamide or 1H-indolyl moiety as the P3
substituent provides analogues with activities in the low
nanomolar range. Within thisesriesof inhibitorsthe
The authorsthank M. Bpising, D. Huerzeler, G.
Schreiber and Y. Seltenmeyer for excellent technical
assistance.
References and Notes
1. Marquis, R. W. Annu. Rep. Med. Chem. 2000, 35, 309.
2. Leung, D.; Abbenante, G.; Fairlie, D. P. J. J. Med. Chem.
2000, 43, 305.
3. Veber, D. F.; Thompson, S. K. Curr. Opin. Drug Discov.
Dev. 2000, 3, 362.
4. Bromme, D. Drug News Perspect 1999, 12, 73.
0
size of the P1 substituent had an impact on the selec-
tivity profile. Inhibitors 7e, h and j all incorporating a
4-methoxy substituent on the aminophenyl ring are the
least selective for cathepsin K over cathepsins L and S.
5. Recent publications on cysteine protease inhibitors: (a)
Falgueyret, J. P.; Oballa, R. M.; Okamoto, O.; Weso-
lowski, G.; Aubin, Y; Rydzewski, R. M.; Prasit, P.;
Riendeau, D.; Rodan, S. B.; Percival, M. D. J. Med.
Chem. 2001, 44, 94. (b) Marquis, R. W.; Ru, Y.; LoCastro,
S. M.; Zeng, J.; Yamashita, D. S.; Oh, H.-J.; Erhard, K. F.;
Davis, L. D.; Tomaszek, T. A.; Tew, D.; Salyers, K.; Proksch,
J.; Ward, K.; Smith, B.; Levy, M; Cummings, M. D.; Halti-
wanger, R. C.; Trescher, G.; Wang, B; Hemling, M. E.; Quinn,
C. J.; Cheng, H.-Y.; Lin, F.; Smith, W. W.; Janson, C. A.;
Zhao, B.; McQueney, M. S.; D’Alessio, K.; Lee, C.-P.; Mar-
zulli, A.; Dodds, R. A.; Blake, S.; Hwang, S.-M.; James, I. E;
Gress, C. J.; Bradley, B. R.; Lark, M. W.; Gowen,
M.; Veber, D. F. J. Med. Chem. 2001, 44, 725. (c)
Marquis, R. W.; Ru, Y.; LoCastro, S. M.; Zeng, J.; Trout,
R. E. L.; LoCastro, S. M.; Gribble, A. D.; Witherington, J;
Fenwick, A. E.; Garnier, B.; Tomaszek, T; Tew, D; Hemling,
D; Quinn, C. J.; Smith, W. W.; Zhao, B.; McQueney, M. S.;
Janson, C. A.; D’Alessio, K; Veber, D. F. J. Med. Chem. 2001,
44, 1380. (d) Huang, L.; Lee, A.; Ellman, J. A. J. Med. Chem.
2002, 45, 676.
0
Extended and lipophilic P1 substituents such as an iso-
butyloxy, a methylcyclopentyloxy- or a benzyloxy moi-
ety in compounds 7f, g, i, k–m were found to be
significantly more selective inhibitors for cathepsin K.
Out of thisesriescompound
7k emerged asthe mots
attractive analoge investigated, which apart from high
potency for cathepsin K inhibition exhibits the most
favorable selectivity profile (>3300-fold for cathepsin K
over cathepsins L and S).
In conclusion we have described the synthesis and in
vitro activitiesof a seriesof Nꢀ-benzyloxycarbonyl- and
Nꢀ-acyl-L-leucine(2-phenylaminoethyl)amide
deriva-
substituents.
0
tiveswhich incorporate 0 extended P
1
Expanded lipophilic P1 moitiesdo not improve the
potency of our inhibitors, however they generally lead
to an increased specificity for cathepsin K over the two