an electron-transporting layer of TPBI (30 nm), and a cathode composed
of lithium fluoride (1 nm) and aluminum (100 nm) were sequentially
deposited onto the substrate by vacuum deposition in a vacuum with
a pressure of 10−6 Torr. The current density–voltage–luminance (J–V–L)
measurements of the devices were recorded with a Keithley 2400 Source
meter and a Keithley 2000 Source multimeter equipped with a calibrated
silicon photodiode. The EL spectra were measured using a JY SPEX
CCD3000 spectrometer. The EQE values were calculated according to
previously reported methods.[24] All measurements were carried out at
room temperature under ambient conditions.
Z. Zhang, T. Zou, J. Qin, D. Ma, Angew. Chem. Int. Ed. 2008, 47,
8104.
[4] a) C.-H. Chien, F.-M. Hsu, C.-F. Shu, Y. Chi, Org. Electron. 2009, 10,
871; b) Y. Tao, Q. Wang, L. Ao, C. Zhong, J. Qin, C. Yang, D. Ma, J.
Mater. Chem. 2010, 20, 1759.
[5] a) R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Kwong, J. J. Brown,
S. Garon, M. E. Thompson, Appl. Phys. Lett. 2003, 82, 2422;
b) S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki, F. Sato, Appl.
Phys. Lett. 2003, 83, 569.
[6] a) M.-H. Tsai, H.-W. Lin, H.-C. Su, T.-H. Ke, C.-C. Wu, F.-C. Fang,
Y.-L. Liao, K.-T. Wong, C.-I. Wu, Adv. Mater. 2006, 18, 1216;
b) M.-H. Tsai, Y.-H. Hong, C.-H. Chang, H.-C. Su, C.-C. Wu,
A. Matoliukstyte, J. Simokaitiene, S. Grigalevicius, J. V. Grazulevicius,
C.-P. Hsu, Adv. Mater. 2007, 19, 862.
[7] a) F.-M. Hsu, C.-H. Chien, C.-F. Shu, C.-H. Lai, C.-C. Hsieh,
K.-W. Wang, P.-T. Chou, Adv. Funct. Mater. 2009, 19, 2834; b) S.-J. Su,
Y. Takahashi, T. Chiba, T. Takeda, J. Kido, Adv. Funct. Mater. 2009, 19,
1260.
[8] S.-J. Su, E. Gonmori, H. Sasabe, J. Kido, Adv. Mater. 2008, 20, 4189.
[9] R. J. Holmes, B. W. D’Andrade, S. R. Forrest, X. Ren, J. Li,
M. E. Thompson, Appl. Phys. Lett. 2003, 83, 3818.
[10] H.-H. Chou, C.-H. Cheng, Adv. Mater. 2010, 22, 2468.
[11] H. Fukagawa, N. Yokoyama, S. Irisa, S. Tokito, Adv. Mater. 2010, 22,
4775.
[12] S.-H. Eom, Y. Zheng, E. Wrzesniewski, J. Lee, N. Chopra, F. So,
J. Xue, Org. Electron. 2009, 10, 686.
Synthesis of {4-[{4-[5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazol-
3-yl]phenyl}(diphenyl)silyl]phenyl}diphenylamine (p-TAZSiTPA): A mixture
of p-TAZSi-Br (2.07 g, 3.00 mmol), diphenylamine (0.54 g, 3.20 mmol),
Pd(OAc)2 (13 mg, 0.06 mmol), tBuONa (0.35 g, 3.60 mmol), and
(tBu)3PHBF4 (52 mg, 0.18 mmol) in toluene (20 mL) was refluxed under
argon for 18 h. After cooling, the reaction mixture was extracted with
brine and CH2Cl2 and dried over anhydrous Na2SO4. After removal
of the solvent, the residue was purified by column chromatography
on silica gel using ethyl acetate/CH2Cl2 (1:15 by vol) as the eluent to
1
give a white powder. Yield: 45%. H NMR (300 MHz, CDCl3) δ [ppm]:
7.53–7.48 (m, 6H), 7.46–7.40 (m, 6H), 7.38–7.29 (m, 11H), 7.24–7.19
(m, 6H), 7.13 (d, J = 7.2 Hz, 4H), 7.07-7.00 (m, 4H), 1.28 (s, 9H). 13C
NMR (75 MHz, CDCl3) δ [ppm]: 154.82, 154.46, 152.70, 149.07, 147.11,
137.12, 136.61, 136.23, 135.27, 133.93, 129.93, 129.58, 129.25, 128.21,
127.81, 127.65, 125.30, 125.08, 123.83, 123.42, 121.33, 34.64, 31.06. MS
(EI): m/z 778.3 [M+]. Anal. calcd for C54H46N4Si (%): C 83.25, H 5.95,
N 7.19; found: C 83.21, H 6.15, N 6.94.
[13] X. Ren, J. Li, R. J. Holmes, P. I. Djurovich, S. R. Forrest,
M. E. Thompson, Chem. Mater. 2004, 16, 4743.
[14] A. C. Arias, J. D. MacKenzie, I. McCulloch, J. Rivnay, A. Salleo, Chem.
Rev. 2010, 110, 3.
Supporting Information
Supporting Information is available from the Wiley Online Library or
from the author.
[15] a) G. Zhou, W.-Y. Wong, B. Yao, Z. Xie, L. Wang, Angew. Chem.
Int. Ed. 2007, 46, 1149; b) H. Kim, Y. Byun, R. R. Das, B.-K. Choi,
P.-S. Ahn, Appl. Phys. Lett. 2007, 91, 093512.
[16] a) J. Ding, J. Gao, Y. Cheng, Z. Xie, L. Wang, D. Ma, X. Jing, F. Wang,
Adv. Funct. Mater. 2006, 16, 575; b) Z. Ge, T. Hayakawa, S. Ando,
M. Ueda, T. Akiike, H. Miyamoto, T. Kajita, M.-a. Kakimoto, Adv.
Funct. Mater. 2008, 18, 584.
[17] a) J. Ding, B. Zhang, J. Lü, Z. Xie, L. Wang, X. Jing, F. Wang, Adv.
Mater. 2009, 21, 4983; b) K. S. Yook, S. E. Jang, S. O. Jeon, J. Y. Lee,
Adv. Mater. 2010, 22, 4479.
[18] A. van Dijken, J. J. A. M. Bastiaansen, N. M. M. Kiggen,
B. M. W. Langeveld, C. Rothe, A. Monkman, I. Bach, P. Stössel,
K. Brunner, J. Am. Chem. Soc. 2004, 126, 7718.
[19] Y.-H. Niu, M. S. Liu, J.-W. Ka, A. K. Y. Jen, Appl. Phys. Lett. 2006, 88,
093505.
Acknowledgements
The authors thank the National Natural Science Foundation of China
(Project Nos. 90922020 and 20621401), the National Basic Research
Program of China (973 Program 2009CB623602 and 2009CB930603), the
National Science Fund for Distinguished Young Scholars, the Program
for Changjiang Scholars and Innovative Research Team in University
(IRT1030), and the Open Research Fund of State Key Laboratory
of Polymer Physics and Chemistry, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences for financial support.
Received: July 18, 2011
Published online: September 30, 2011
[20] S. Gong, Y. Chen, C. Yang, C. Zhong, J. Qin, D. Ma, Adv. Mater.
2010, 22, 5370.
[21] L.-H. Chan, H.-C. Yeh, C.-T. Chen, Adv. Mater. 2001, 13, 1637.
[22] M. S. Liu, Y.-H. Niu, J.-W. Ka, H.-L. Yip, F. Huang, J. Luo, T.-D. Kim,
A. K. Y. Jen, Macromolecules 2008, 41, 9570.
[23] a) S. Ye, Y. Liu, J. Chen, K. Lu, W. Wu, C. Du, T. Wu, Z. Shuai, G. Yu,
Adv. Mater. 2010, 22, 4167; b) T. Earmme, E. Ahmed, S. A. Jenekhe,
Adv. Mater. 2010, 22, 4744.
[1] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley,
M. E. Thompson, S. R. Forrest, Nature 1998, 395, 151.
[2] X. Yang, D. Neher, in Organic Light Emitting Devices (Eds: K. Müllen,
U. Scherf), Wiley-VCH, Weinheim 2006, pp. 333–367.
[3] a) H. Sasabe, T. Chiba, S.-J. Su, Y.-J. Pu, K.-I. Nakayama, J. Kido,
Chem. Commun. 2008, 5821; b) Y. Tao, Q. Wang, C. Yang, Q. Wang,
[24] S. R. Forrest, D. D. C. Bradley, M. E. Thompson, Adv. Mater. 2003,
15, 1043.
©
wileyonlinelibrary.com
Adv. Mater. 2011, 23, 4956–4959
2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
4959