P. Liu et al. / Tetrahedron Letters 53 (2012) 560–563
563
Sugimoto, H.; Otani, Y.; Ohwada, T. J. Am. Chem. Soc. 2010, 132, 807–815; (g)
Martínez, A.; García-García, P.; Fernández-Rodríguez, M. A.; Rodríguz, F.; Sanz,
R. Angew. Chem., Int. Ed. 2010, 49, 4633–4637.
Br
Br
Br
R
Cs2CO3
CuI, L
R
Br
5. (a) Billups, W. E.; Buynak, J. D.; Butler, D. J. Org. Chem. 1980, 45, 4636–4641; (b)
Lindley, W. A.; MacDowell, D. W. H. J. Org. Chem. 1982, 47, 705–709; (c) Tutar,
A.; Cakmak, O.; Balci, M. Tetrahedron 2001, 57, 9759–9763.
6. Saito, S.; Homma, M.; Gevorgyan, V.; Yamamoto, Y. Chem. Lett. 2000, 722–723.
7. Zhou, X.; Zhang, H.; Xie, X.; Li, Y. J. Org. Chem. 2008, 73, 3958–3960.
8. Khan, Z. A.; Wirth, T. Org. Lett. 2009, 11, 229–231.
9. Ye, S.; Gao, K.; Zhou, H.; Yang, X.; Wu, J. Chem. Commun. 2009, 5406–5408.
10. Sanz, R.; Martíguez, A.; García-García, P.; Fernández-Rodríguez, M. A.; Rashid,
M. A.; Rodríguez, F. Chem. Commun. 2010, 46, 7427–7429.
CO2Et
Cu
L
EtO2C
CO2Et
CO2Et
1
Br
Br
R
R
Br
Cu
CO2Et
L
11. Zhu, Y.; Yin, G.; Hong, D.; Lu, P.; Wang, Y. Org. Lett. 2011, 13, 1024–1027.
12. For comprehensive reviews, see: (a) Xu, B.; Ma, S. Chin. J. Org. Chem. 2001, 21,
252–262; (b) Legrand, F.; Jouvin, K.; Evano, G. Isr. J. Chem. 2010, 50, 588–604.
13. For selected examples, see: (a) Roush, W. R.; Moriarty, K. J.; Brown, B. B.
Tetrahedron Lett. 1990, 31, 6509–6512; (b) Panek, J. S.; Hu, T. J. Org. Chem. 1997,
62, 4912–4913; (c) Shen, W.; Wang, L. J. Org. Chem. 1999, 64, 8873; (d) Langille,
N. F.; Panek, J. S. Org. Lett. 2004, 6, 3203–3206; (e) Molander, G. A.; Yokoyama,
Y. J. Org. Chem. 2006, 71, 2493–2498.
14. For selected examples, see: (a) Neidlein, R.; Winter, M. Synthesis 1998, 1362–
1366; (b) Kaafarani, B. R.; Pinkerton, A. A.; Neckers, D. C.; Douglas, C.
Tetrahedron Lett. 2001, 42, 8137–8139; (c) Hwang, G. T.; Son, H. S.; Ku, J. K.;
Kim, B. H. J. Am. Chem. Soc. 2003, 125, 11241–11248; (d) Kabalka, G. W.; Dong,
G.; Venkataiah, B. Tetrahedron Lett. 2005, 46, 763–765.
15. For selected examples, see: (a) Fang, Y.-Q.; Lautens, M. Org. Lett. 2005, 7, 3549–
3552; (b) Sun, C.; Xu, B. J. Org. Chem. 2008, 73, 7361–7364; (c) Newman, S. G.;
Aureggi, V.; Bryan, C. S.; Lautens, M. Chem. Commun. 2009, 5236–5238; (d)
Wang, Z.-J.; Yang, J.-G.; Yang, F.; Bao, W. Org. Lett. 2010, 12, 3034–3037.
16. For selected examples, see: (a) McAlonan, H.; Montgomery, D.; Stevenson, P. J.
Tetrahedron Lett. 1996, 37, 7151–7154; (b) Møller, B.; Undheim, K. Eur. J. Org.
Chem. 2003, 332–336; (c) Ye, S.; Ren, H.; Wu, J. J. Comb. Chem. 2010, 12, 670–
675.
17. (a) Tao, K.; Zheng, J.; Liu, Z.; Shen, W.; Zhang, J. Tetrahedron Lett. 2010, 51,
3246–3249; (b) Jiang, B.; Tao, K.; Shen, W.; Zhang, J. Tetrahedron Lett. 2010, 51,
6342–6344; (c) Wang, L.; Shen, W. Tetrahedron Lett. 1998, 39, 7625.
18. Minami, T.; Isonaka, T.; Okada, Y.; Ichikawa, J. J. Org. Chem. 1993, 58, 7009–
7015.
19. Typical procedure for the synthesis of diethyl 2-(2-(2,2-dibromovinyl)
phenylmalonate (1a): To a well-stirred mixture of ethyl 2-(2-formylphenyl)
malonate (2.60 g, 9.85 mmol), CBr4 (6.60 g, 19.90 mmol) in DCM (100 mL) was
added dropwise a solution of PPh3 (10.40 g, 39.65 mmol) in DCM (50 mL) over
0.5 h at 0 °C. At the end of addition, the reaction mixture was further stirred at
0 °C for 0.5 h, and then allowed to warm to room temperature. After 2 h
stirring, hexane was added to precipitate as much Ph3PO as possible, and the
suspension was filtered through silica (washed with EtOAc). The solution was
concentrated under reduced pressure, and the residue was purified by column
chromatography on silica gel (petroleum ether–EtOAc = 15:1) to give 1a as a
clear, colorless oil (2.96 g, 72%). 1H NMR (400 MHz, CDCl3) d 7.58 (s, 1H), 7.50
(d, J = 6.8 Hz, 1H), 7.35–7.40 (m, 3H), 4.76 (s, 1H), 4.17–4.29 (m, 4H), 1.28 (t,
J = 7.1 Hz, 6H); 13C NMR (125 MHz, CDCl3) d 167.7, 136.2, 136.0, 130.9, 129.5,
129.3, 128.7, 128.2, 94.2, 61.9, 55.0, 14.0; HRMS (ESI) exact mass calculated for
[M+H]+ (C15H17Br2O4) requires m/z 420.9473, found m/z 420.9469.
20. Typical procedure for the synthesis of diethyl 2-bromo-1H-indene-1,1-
EtO2C
EtO2C
CO2Et
2
Scheme 2. Possible mechanism for the formation of 2 from compound 1.
directing Cu insertion into the ‘cis’-Br, and leading to the desired
product. This mechanism explains the high selectivity over the dis-
tal iodo substitution (Table 2, entry 14).
In conclusion, we have developed an efficient method for the
synthesis of 2-bromo-1H-indenes via copper-catalyzed intramo-
lecular C–C cross-coupling reaction. A variety of 2-bromo-1H-ind-
enes were obtained in moderate to good yields. This method may
provide a new way for the synthesis of highly functionalized
indenes.
Acknowledgment
We are grateful to the Grant-in-Aid for Scientific Research from
the Chinese Academy of Science Innovation Grant (KSCX1-YW-10)
for financial support of this work.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. (a) Fredenburgh, L.; Foster, B. Tetrahedron Lett. 1995, 36, 3993–3996; (b) Reggio,
P. H.; Basu-Dutt, S.; Barnett-Norris, J.; Castro, M. T.; Hurst, D. P.; Seltzman, H.
H.; Roche, M. J.; Gilliman, A. F.; Thomas, B. F.; Stevenson, L. A.; Pertwee, R. G.;
Abood, M. E. J. Med. Chem. 1998, 41, 5177–5187; (c) Yu, H.; Kim, I. J.; Folk, J. E.;
Tian, X.; Rothman, R. B.; Baumann, M. H.; Dersch, C. M.; Flippen-Anderson, J. L.;
Parrish, D.; Jacobson, A. E.; Rice, K. C. J. Med. Chem. 2004, 47, 2624–2634; (d)
Clegg, N. J.; Paruthiyil, S.; Leitman, D. C.; Scanlan, T. S. J. Med. Chem. 2005, 48,
5989–6003; (e) Alcalde, E.; Mesquida, N.; Frigola, J.; López-Pérez, S.; Mercè, R.
Org. Biomol. Chem. 2008, 6, 3795–3810.
2. (a) Leino, R.; Lehmus, P.; Lehtonen, A. Eur. J. Inorg. Chem. 2004, 3201–3222; (b)
Wang, B. Coord. Chem. Rev. 2006, 250, 242–258.
3. (a) Yang, J.; Lakshimkantham, M. V.; Cava, M. P. J. Org. Chem. 2000, 65, 6739–
6742; (b) Barberá, J.; Rakitin, O. A.; Torroba, T. Angew. Chem., Int. Ed. 1998, 37,
296–299.
4. For selective examples for the synthesis of indene derivatives, see: (a) Lautens,
M.; Marquardt, T. J. Org. Chem. 2004, 69, 4607–4614; (b) Zhang, D.; Yum, E. K.;
Liu, Z.; Larock, R. C. Org. Lett. 2005, 22, 4963–4966; (c) Womack, G. B.; Angeles,
J. G.; Fanelli, V. E.; Heyer, C. A. J. Org. Chem. 2007, 72, 7046–7049; (d) Zhu, X.;
Mitsui, C.; Tsuji, H.; Nakamura, E. J. Am. Chem. Soc. 2009, 131, 13596–13597; (e)
Bryan, C. S.; Lautens, M. Org. Lett. 2010, 12, 2754–2757; (f) Kurouchi, H.;
dicarboxylate (2a):
A mixture of 1a (210 mg, 0.5 mmol), CuI (9 mg,
0.05 mmol, 10 mol %), 1,10-phenanthroline(18 mg, 0.10 mmol, 20 mol %), and
Cs2CO3 (489 mg, 1.50 mmol) in THF (5 mL) was stirred for 12 h under an argon
atmosphere at 75 °C. The resultant mixture was cooled to room temperature
and filtered through celite. The filtrate was concentrated under reduced
pressure, and the residue was purified by column chromatography on silica gel
(petroleum ether–EtOAc = 15:1) to afford 2a as a clear, yellow oil (134 mg,
79%).1H NMR (400 MHz, CDCl3) d 7.61 (d, J = 7.4 Hz, 1H), 7.30–7.34 (m, 1H),
7.23–7.27 (m, 2H), 7.08 (s, 1H), 4.19–4.32 (m, 4H), 1.27 (t, J = 7.2 Hz, 6H); 13C
NMR (125 MHz, CDCl3) d 166.2, 142.6, 140.5, 137.3, 128.9, 126.4, 124.8, 123.8,
120.8, 72.3, 62.4, 13.9; HRMS (ESI) exact mass calculated for [M+H]+
(C15H16BrO4) requires m/z 339.0232, found m/z 339.0232.
21. Similarly, iodo is tolerated in the analogous indole preparation: Newman, S. G.;
Lautens, M. J. Am. Chem. Soc. 2010, 132, 11416–11417.