protocol for the construction of complex molecules.4 In this
context, cascade CꢀH oxidative olefination/cyclization
the privileged indole and pyrrole scaffolds is still rare but
highly desirable.
As part of our ongoing program on heterocycle-oriented
methodology development, we describe herein a highly
regioselective CꢀH olefination/cyclization sequence of
N-aryl-substituted indoles/pyrroles and electron-withdraw-
ing olefins for the synthesis of a series of novel indole/fused
heterocycle derivatives.9,10
Table 1. Optimization of Reaction Conditions for the CꢀH
Olefination/Cyclisation Sequencea
Figure 1. Representative examples of indole/pyrrole-fused
quinoxaline derivatives.
processes have been widely used to efficiently generate
structurally diverse heterocyclic compounds.5,6 In the
1990s, Miura and co-workers reported their pioneer-
ing work on Pd-catalyzed cascade CꢀH olefination
and CꢀX bond (X = N, O) formation utilizing phenol,
benzoic acid and benzene sulphonamide.7 More recently,
related examples of Pd- and Rh-catalyzed cascade CꢀH
olefination/cyclization reactions via the cleavage of aro-
matic CꢀH bonds of amides or benzoic acids have been
successfully developed by Yu, Glorius, Li, and others.8
Despite these advances, the application of such a cascade
CꢀH oxidative olefination/cyclization methodology to
temp
yield
(%)b
entry
catalyst
Pd(OAc)2
(°C)
base
NaOAc
1
100
100
100
100
100
100
100
100
110
120
110
110
110
110
110
110
58
53
54
39
49
51
18
38
76
71
71
70
75
72
82
76
2
Pd(TFA)2
PdCl2
NaOAc
3
NaOAc
4
Pd(PPh3)2Cl2
Pd(CH3CN)2Cl2
Pd(PhCN)2Cl2
Pd2dba3
NaOAc
5
NaOAc
6
NaOAc
7
NaOAc
8
Pd(PPh3)4
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
NaOAc
9
NaOAc
10
11
12
13
14
15c
16d
NaOAc
(4) For selected reviews, see: (a) Ritleng, V.; Sirlin, C.; Pfeffer, M.
Chem. Rev. 2002, 102, 1731. (b) Kakiuchi, F.; Murai, S. Acc. Chem. Res.
2002, 35, 826. (c) Godula, K.; Sames, D. Science 2006, 312, 67. (d)
Campeau, L.-C.; Fagnou, K. Chem. Soc. Rev. 2007, 36, 1058. (e) Seregin,
I. V.; Gevorgyan, V. Chem. Soc. Rev. 2007, 36, 1173. (f) Alberico, D.;
Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174. (g) Daugulis, O.;
Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074. (h) Chen, X.;
Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48,
5094. (i) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int.
Ed. 2009, 48, 9792. (j) Xu, L.-M.; Li, B.-J.; Yang, Z.; Shi, Z.-J. Chem.
Soc. Rev. 2010, 39, 712. (k) Lyons, T. W.; Sanford, M. S. Chem. Rev.
2010, 110, 1147. (k) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem.
Rev. 2010, 110, 624. (l) Ackermann, L. Chem. Rev. 2011, 111, 1315. (m)
McMurray, L.; O’Hara, F.; Gaunt, M. J. Chem. Soc. Rev. 2011, 40,
1885. (n) Dyker, G. Handbook of CꢀH Transformations; Wiley-VCH:
Weinheim, 2005.
LiOAc
KOAc
CsOAc
CsOPiv
NaOAcþLiOAc
CsOAcþLiOAc
a Unless noted, reactions were performed with 1a (0.20 mmol),
2a (0.40 mmol), Cu(OAc)2 (0.30 mmol), base (0.45 mmol), and Pd-catalyst
(10 mol %) in DMF (2.0 mL) at the indicated temperature. b Isolated
yield. c NaOAc (0.45 mmol) and LiOAc (0.45 mmol). d CsOAc (0.45 mmol)
and LiOAc (0.45 mmol).
(5) For initial reports, see: (a) Moritani, I.; Fujiwara, Y. Tetrahedron
Lett. 1967, 8, 1119. (b) Fujiwara, Y.; Moritani, I.; Danno, S.; Asano, R.;
Teranishi, S. J. Am. Chem. Soc. 1969, 91, 7166. (c) Jia, C.; Piao, D.;
Oyamada, J.; Lu, W.; Kitamura, T.; Fujiwara, Y. Science 2000, 287,
1992.
We commenced the cascade reaction between N-aryl-
substituted indole derivatives 1a and n-butyl acrylate 2a.
(6) For reviews, see: (a) Moritani, I.; Fujiwara, Y. Synthesis 1973,
524. (b) Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34,
633. (c) Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S.
Chem. Rev. 2007, 107, 5318.
(7) (a) Miura, M.; Tsuda, T.; Satoh, T.; Nomura, M. Chem. Lett.
1997, 1103. (b) Miura, M.; Tsuda, T.; Satoh, T.; Pivsa-Art, S.; Nomura,
M. J. Org. Chem. 1998, 63, 5211.
(8) (a) Ueura, K.; Satoh, T.; Miura, M. Org. Lett. 2007, 9, 1407. (b)
Ueura, K.; Satoh, T.; Miura, M. J. Org. Chem. 2007, 72, 5362. (c) Li,
J.-J.; Mei, T.-S.; Yu, J.-Q. Angew. Chem., Int. Ed. 2008, 47, 6452. (d) Lu, Y.;
Wang, D.-H.; Engle, K. M.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 5916. (e)
Wasa, M.; Engle, K. M.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 3680. (f)
Wang, F.; Song, G.; Li, X. Org. Lett. 2010, 12, 5430. (g) Rakshit, S.;
Grohmann, C.; Besset, T.; Glorius, F. J. Am. Chem. Soc. 2011, 133
2350. (h) Patureau, F. W.; Besset, T.; Glorius, F. Angew. Chem., Int.
Ed. 2011, 50, 1064. (i) Zhu, C.; Falck, J. R. Org. Lett. 2011, 13, 1214. (j)
Willwacher, J.; Rakshit, S.; Glorius, F. Org. Biomol. Chem. 2011, 9,
4736. (k) Kim, B. S.; Lee, S. Y.; Youn, S. W. Chem.;Asian J. 2011, 6,
1952. (l) Li, X.; Gong, X.; Zhao, M.; Song, G.; Deng, J.; Li, X. Org.
Lett. 2011, 13, 5808.
(9) (a) Li, C.-F.; Liu, H.; Liao, J.; Cao, Y.-J.; Liu, X.-P.; Xiao, W.-J.
Org. Lett. 2007, 9, 1847. (b) Chen, J.-R.; Li, C.-F.; An, X.-L.; Zhang,
J.-J.; Zhu, X.-Y.; Xiao, W.-J. Angew. Chem., Int. Ed. 2008, 47, 2489. (c)
Chen, C.-B.; Wang, X.-F.; Cao, Y.-J.; Cheng, H.-G.; Xiao, W.-J. J. Org.
Chem. 2009, 74, 3532. (d) An, X.-L.; Chen, J.-R.; Li, C.-F.; Zhang,
F.-G.; Zou, Y.-Q.; Guo, Y.-C.; Xiao, W.-J. Chem.;Asian J. 2010, 5,
2258. (e) Cheng, H.-G.; Chen, C.-B.; Tan, F.; Chang, N.-J.; Chen, J.-R.;
Xiao, W.-J. Eur. J. Org. Chem. 2010, 4976. (f) Wang, X.-F.; Chen, J.-R.;
Cao, Y.-J.; Cheng, H.-G.; Xiao, W.-J. Org. Lett. 2010, 12, 1140. (g) Cao,
Y.-J.; Cheng, H.-G.; Lu, L.-Q.; Zhang, J.-J.; Cheng, Y.; Chen, J.-R.;
Xiao, W.-J. Adv. Synth. Catal. 2011, 353, 617.
(10) (a) Lu, L.-Q.; Cao, Y.-J.; Liu, X.-P.; An, J.; Yao, C.-J.; Ming,
Z.-H.; Xiao, W.-J. J. Am. Chem. Soc. 2008, 130, 6946. (b) Lu, L.-Q.; Li,
F.; An, J.; Zhang, J.-J.; An, X.-L.; Hua, Q.-L.; Xiao, W.-J. Angew.
Chem., Int. Ed. 2009, 48, 9542. (c) Lu, L.-Q.; Zhang, J.-J.; Li, F.; Cheng,
Y.; An, J.; Chen, J.-R.; Xiao, W.-J. Angew. Chem., Int. Ed. 2010, 49,
4495. (d) Wang, X.-F.; Hua, Q.-L.; Cheng, Y.; An, X.-L.; Yang, Q.-Q.;
Chen, J.-R.; Xiao, W.-J. Angew. Chem., Int. Ed. 2010, 49, 8379. (e) Zou,
Y.-Q.; Lu, L.-Q.; Fu, L.; Chang, N.-J.; Rong, J.; Chen, J.-R.; Xiao, W.-J.
Angew. Chem., Int. Ed. 2011, 50, 7171.
Org. Lett., Vol. 14, No. 3, 2012
741