Journal of the American Chemical Society
Communication
Veldhuizen, J. J.; Campbell, J. E.; Giudici, R. E.; Hoveyda, A. H. J. Am.
Chem. Soc. 2005, 127, 6877. (e) Kacprzynski, M. A.; May, T. L.;
Kazane, S. A.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2007, 46, 4554.
(5) Lee, Y.; Li, B.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131,
11625.
Scheme 5. Catalytic Hydroboration of Allenes
(6) Gillingham, D. G.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2007,
46, 3860.
(7) (a) Lee, Y.; Akiyama, K.; Gillingham, D. G.; Brown, M. K.;
Hoveyda, A. H. J. Am. Chem. Soc. 2008, 130, 446. (b) Akiyama, K.;
Gao, F.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2010, 49, 419. (c) Gao,
F.; McGrath, K. P.; Lee, Y.; Hoveyda, A. H. J. Am. Chem. Soc. 2010,
132, 14315.
(8) (a) Gao, F.; Lee, Y.; Mandai, K.; Hoveyda, A. H. Angew. Chem.,
Int. Ed. 2010, 49, 8370. (b) Reference 4e. For related studies, see:
(c) Selim, K. B.; Yamada, K.-i.; Tomioka, K. Chem. Commun. 2008,
5140. (d) Selim, K. B.; Matsumoto, Y.; Yamada, K.-i.; Tomioka, K.
Angew. Chem., Int. Ed. 2009, 48, 8733. (e) Polet, D.; Rathgeb, X.;
Falciola, C. A.; Langlois, J.-B.; Hajjaji, S. E.; Alexakis, A. Chem.Eur. J.
2009, 15, 1205.
(9) Dabrowski, J. A.; Gao, F.; Hoveyda, A. H. J. Am. Chem. Soc. 2011,
133, 4778.
(10) Das, J. P.; Marek, I. Chem. Commun. 2011, 47, 4593.
(11) Brown, M. K.; May, T. L.; Baxter, C. A.; Hoveyda, A. H. Angew.
Chem., Int. Ed. 2007, 46, 1097.
(12) For Cu-catalyzed allylic substitutions with arylboronates, see:
(a) Ohmiya, H.; Yokokawa, N.; Sawamura, M. Org. Lett. 2010, 12,
2438. (b) Whittaker, A. M.; Rucker, R. P.; Lalic, G. Org. Lett. 2010, 12,
3216. For an enantioselective version with the more reactive
arylboronic acid neopentyl glycol esters, see: (c) Shintani, R.; Takatsu,
K.; Takeda, M.; Hayashi, T. Angew. Chem., Int. Ed. 2011, 50, 8656.
access to such entities by enantioselective conjugate addition of
an unsubstituted vinyl unit to an enone or of an aryl or alkyl
group to the corresponding dienone are scarce, particularly in
cases where quaternary carbons are involved (e.g., 20).26
Catalytic EAS processes with enol-based reagents also remain
undisclosed.
ASSOCIATED CONTENT
* Supporting Information
■
S
́
(13) For a study of allenylcuprates, see: Vrancken, E.; Gerard, H.;
Linder, D.; Ouizem, S.; Alouane, N.; Roubineau, E.; Bentayeb, K.;
Marrot, J.; Mangeney, P. J. Am. Chem. Soc. 2011, 133, 10790.
(14) Ohishi, T.; Nishiura, M.; Hou, Z. Angew. Chem., Int. Ed. 2008,
47, 5792.
Experimental procedures and spectral and analytical data for all
products. This material is available free of charge via the
(15) It is equally feasible that the allenyl-NHC−cuprate is generated
through σ-bond metathesis involving a methoxycuprate derived from
reaction of the bidentate Cu complex and NaOMe.
(16) For example, see: Fandrick, D. R.; Saha, J.; Fandrick, K. R.; Sanyal,
S.; Ogikubo, J.; Lee, H.; Roschangar, F.; Song, J. J.; Senanayake, C. H.
Org. Lett. 2011, 13, 5616.
(17) Vieira, E. M.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc.
2011, 133, 3332.
(18) The absence of the propargyl addition can be attributed to a
Cu(III) intermediate and reductive elimination.
(19) Yoshikai, N.; Nakamura, E. Chem. Rev. 2011, DOI: 10.1021/
cr200241f.
AUTHOR INFORMATION
Corresponding Author
■
ACKNOWLEDGMENTS
■
We thank Professor E. Nakamura for an advanced copy of a
review article (ref 19), J. L. Carr, J. A. Dabrowski and F. Gao for
helpful discussions, and Frontier Scientific for generous gifts of
1. Financial support was provided by the NIH (GM-47480)
and the NSF (CHE-1111074).
(20) See the Supporting Information (SI) for more details.
(21) In support of the proposal that a metal phenoxide (but not a
metal sulfonate) is sufficiently Lewis basic to promote allene transfer
from boron to Cu (cf. eq 1), we found that NaOPh (instead of
NaOMe) can be used as the base in the EAS process, affording 11.
When NaO2SOPh was used, <2% conversion was observed.
(22) For an analysis regarding the site selectivity patterns as a
function of the electronic attributes of the substrate, see the SI.
(23) See the SI for the efficiency and selectivity observed for reaction
of 15a with different NHC−Cu catalysts.
REFERENCES
■
(1) (a) Modern Allene Chemistry; Krause, N., Hashmi, A. S. K., Eds.;
Wiley−VCH: Weinheim, Germany, 2004. (b) Yu, S.; Ma, S. Chem.
Commun. 2011, 47, 5384.
(2) (a) Yu, C.-M.; Yoon, S.-K.; Baek, K.; Lee, J.-Y. Angew. Chem., Int.
Ed. 1998, 37, 2392. (b) Inoue, M.; Nakada, M. Angew. Chem., Int. Ed.
2006, 45, 252. (c) Xia, G.; Yamamoto, H. J. Am. Chem. Soc. 2007, 129,
496. (d) Coeffard, V.; Aylward, M.; Guiry, P. J. Angew. Chem., Int. Ed.
́ ́
2009, 48, 9152. (e) Duran-Galvan, M.; Worlikar, S. A.; Connell, B. T.
(24) (a) Lee, Y.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 3160.
(b) Lee, Y.; Jang, H.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131,
Tetrahedron 2010, 66, 7707. (f) Imada, Y.; Nishida, M.; Kutsuwa, K.;
Murahashi, S.-I.; Naota, T. Org. Lett. 2005, 7, 5837. (g) Zhang, W.;
Zheng, S.; Liu, N.; Werness, J. B.; Guzei, I. A.; Tang, W. J. Am. Chem.
Soc. 2010, 132, 3664.
́
18234. (c) Corberan, R.; Mszar, N. W.; Hoveyda, A. H. Angew. Chem.,
Int. Ed. 2011, 50, 7079.
(25) Zhang, P.; Le, H.; Kyne, R. E.; Morken, J. P. J. Am. Chem. Soc.
2011, 133, 9716 and references cited therein.
(26) Duursma, A.; Boiteau, J.-G.; Lefort, L.; Boogers, J. A. F.; de
Vries, A. H. M.; de Vries, J. G.; Minnaard, A. J.; Feringa, B. L. J. Org.
Chem. 2004, 69, 8045.
(3) For reviews of catalytic allylic alkylations with “hard” C-based
nucleophilic reagents, see: (a) Hoveyda, A. H.; Hird, A. W.; Kacprzynski,
M. A. Chem. Commun. 2004, 1779. (b) Alexakis, A.; Backvall, J.-E.;
̈
̀ ́
Krause, N.; Pamies, O.; Dieguez, M. Chem. Rev. 2008, 108, 2796.
(4) (a) Murphy, K. E.; Hoveyda, A. H. J. Am. Chem. Soc. 2003, 125,
4690. (b) Kacprzynski, M. A.; Hoveyda, A. H. J. Am. Chem. Soc. 2004,
126, 10676. (c) Larsen, A. O.; Leu, W.; Oberhuber, C. N.; Campbell,
J. E.; Hoveyda, A. H. J. Am. Chem. Soc. 2004, 126, 11130. (d) Van
1493
dx.doi.org/10.1021/ja211269w | J. Am. Chem.Soc. 2012, 134, 1490−1493