ACS Medicinal Chemistry Letters
Letter
potent, oral stimulator of soluble guanylate cyclase for the treatment of
pulmonary hypertension. ChemMedChem 2009, 4, 853−865.
(14) Additional pharmacokinetic parameters of 1 are provided in the
Sheppeck II and Dr. Paul Renhowe for helpful discussions. We
also thank Sam Rivers for his technical assistance.
ABBREVIATIONS
(15) Straub, A.; Benet-Buchholz, J.; Frode, R.; Kern, A.; Kholsdorfer,
̈
■
C.; Schmitt, P.; Schwarz, T.; Siefert, H.-M.; Stasch, J.-P. Metabolites of
orally active NO-independent pyrazolopyridine stimulators of soluble
guanylate cyclase. Bioorg. Med. Chem. 2002, 10, 1711−1717.
(16) Additional pharmacokinetic parameters of 5 are provided in the
T. W.-H.; Rohde, J. M.; Kim, C.; Moore, J.; Barden, T. C.; Fretzen, A.;
Butler, C.; Long, K.; Sarno, R.; Germano, P.; Jin, H.; Carvalho, A.;
Solberg, E. O.; Zimmer, D. Discovery of a novel, orally bioavailable
soluble guanylate cyclase stimulator (IWP-051). Presented at 12th
Winter Conference on Medicinal & Bioorganic Chemistry, Steamboat
Springs, Colorado, January 24−29, 2015.
sGC, soluble guanylate cyclase; PAH, pulmonary arterial
hypertension; CTEPH, chronic thromboembolic pulmonary
hypertension; HEK, human embryonic kidney; DETA-NO,
diethylenetriamine NONOate; KOP, κ-opioid; Cmax, maximum
plasma concentration; AUC, area under the curve; EtOH,
ethanol; LHMDS, lithium hexamethyldisilazide; DBU, 1,8-
diazabicyclo[5.4.0]undec-7-ene; RLM, rat liver microsome;
HLM, human liver microsome; CYP, cytochrome P450
isozymes; MAP, mean arterial pressure; SEM, the standard
error of the mean
(17) Kim, C.; Nakai, T.; Moore, J.; Perl, N. R.; Im, G-Y. J.; Barden, T.
C.; Iyengar, R. R.; Zimmer, D. P.; Fretzen, A.; Renhowe, P. A. 2-
Benzyl,3-(pyrimidin-2-yl) substituted pyrazoles useful as sgc stim-
ulators. WO 2013/101830A1.
(18) Kim, C.; Nakai, T.; Lee, T. W.-H.; Moore, J.; Perl, N. R.; Rhode,
J. SGC stimulators. WO 2012/064559 A1.
(19) Im, G-Y. J.; Iyengar, R.; Moore, J.; Fretzen, A. SGC stimulators.
WO 2014/047111A1.
(20) Nakai, T.; Moore, J.; Perl, N. R.; Iyengar, R. R.; Mermerian, A.;
Im, G-Y. J.; Lee, T. W.-H.; Hudson, C.; Rennie, G. R.; Jia, J.; Renhowe,
P. A.; Barden, T. C.; Yu, X. Y.; Sheppeck, J. E.; Iyer, K.; Jung, J. SGC
stimulators. WO 2014/144100 A2.
REFERENCES
■
(1) Ignarro, L. J.; Buga, G. M.; Wood, K. S.; Byrns, R. E.; Chandhuri,
G. Endothelium derived relaxing factor produced and released from
artery and vein is nitric oxide. Proc. Natl. Acad. Sci. U. S. A. 1987, 84,
9265−9269.
(2) Pohl, U.; de Wit, C. A unique role of NO in the control of blood
flow. News in Physiological Sciences 1999, 14, 74−80.
(3) Stasch, J.-P.; Hobbs, A. J. NO-independent, haem-dependent
soluble guanylate cyclase stimulators. In Handbook of Experimental
Pharmacology; Schmidt, H. H. H. W., Hofmann, F., Stasch, J.- P., Eds.;
Springer: Berlin, 2009; Vol. 199, pp 277−308.
(21) Gielen, H.; Alonso-Alija, C.; Hendrix, M.; Niewohner, U.;
̈
Schauss, D. A novel approach to amidines from esters. Tetrahedron
Lett. 2002, 43, 419−421.
(4) Li, Y.; Zhang, D.; Jin, W.; Shao, C.; Yan, P.; Xu, C.; Sheng, H.;
Liu, Y.; Yu, J.; Xie, Y.; Zhao, Y.; Lu, D.; Nebert, D. W.; Harrison, D.
C.; Huang, W.; Jin, L. Mitochondrial aldehyde dehydrogenase-2
(ALDH2) Glu504Lys polymorphism contributes to the variation in
efficacy of sublingual nitroglycerin. J. Clin. Invest. 2006, 116, 506−511.
(22) Detailed procedures for the synthesis of all analogs including 14
(23) Raghavan, S.; Stelmach, J. E.; Smith, C. J.; Li, H.; Whitehead, A.;
Waddell, S. T.; Chen, Y.-H.; Miao, S.; Ornoski, O. A.; Garfunkle, J.;
Liao, X.; Chang, J.; Han, X.; Guo, J.; Groeper, J. A.; Brockunier, L. L.;
Rosauer, K.; Parmee, E. R. Soluble guanylate cyclase activators. WO
2011/149921A1.
(24) Milne, T.; Butler, C.; Long, K.; Miyashiro, J.; Bernier, S.;
Jacobson, S.; Tobin, J.; Solberg, E.; Shea, C.; Germano, P.; Moore, J.;
Chien, Y.-t.; Zimmer, D. Iwp-051, a novel, orally available small
molecule soluble guanylate cyclase (sgc) stimulator with once-daily
dosing potential for the treatment of cardiovascular diseases. Presented
at 8th International Nitric Oxide Conference & 6th International Nitrite/
Nitrate Conference, Cleveland, OH, June 16−20th, 2014.
(25) Kerns, E. H.; Di, Li Drug-like properties: concepts, structure design
and methods: from ADME to toxicity optimization; Elsevier: Oxford,
2008; pp 188.
(26) Urine collected from dogs following the PO dose contained
<5% of the circulating IWP-051 excreted as parent. The metabolites in
urine were not quantified nor feces samples collected. Due to its low
metabolic turnover and low observed in life clearance, IWP-051 is
most likely cleared as parent through an undetermined route.
(27) The interspecies scaling approach to predict clearance in
humans from mouse, rat and dog data was performed using simple
allometry as previously described: Mahmood, I.; Balian, J. D.
Interspecies scaling: predicting clearance of drugs in humans. Three
different approaches. Xenobiotica 1996, 26 (9), 887−95.
(28) The method for measuring hemodynamic parameters is
(5) Munzel, T.; Daiber, A.; Mulsch, A. Explaining the phenomenon
̈
̈
of nitrate tolerance. Circ. Res. 2005, 97, 618−628.
(6) Evgenov, O. V.; Pacher, P.; Schmidt, P. M.; Hasko, G.; Schmidt,
̃
H. H. H. W.; Stasch, J.-P. NO-independent stimulators and activators
of soluble guanylate cyclase: discovery and therapeutic potential. Nat.
Rev. Drug Discovery 2006, 5, 755−768.
(7) Friebe, A.; Koesling, D. Mechanism of yc-1-induced activation of
soluble guanylate cyclase. Mol. Pharmacol. 1998, 53, 123−127.
(8) Ahluwalia, A.; Foster, P.; Scotland, R. S.; McLean, P. G.; Mathur,
A.; Perretti, M.; Moncada, S.; Hobbs, A. J. Antiinflammatory activity of
soluble guanylate cyclase: cGMP-dependent down-regulation of P-
selectin expression and leukocyte recruitment. Proc. Natl. Acad. Sci. U.
S. A. 2004, 101, 1386−1391.
(9) Beyer, C.; Reich, N.; Schindler, S. C.; Akhmetshina, A.; Dees, C.;
Tomcik, M.; Hirth-Dietrich, C.; von Degenfeld, G.; Sandner, P.;
Distler, O.; Schett, G.; Distler, J. H. W. Stimulation of soluble
guanylate cyclase reduces experimental dermal fibrosis. Ann. Rheum.
Dis. 2012, 71, 1019−1026.
(10) Beyer, C.; Zenzmaier, C.; Palumbo-Zerr, K.; Mancuso, R.;
Distler, A.; Dees, C.; Zerr, P.; Huang, J.; Maier, C.; Pachowsky, M. L.;
Friebe, A.; Sandner, P.; Distler, O.; Schett, G.; Berger, P.; Distler, J. H.
W. Stimulation of the soluble guanylate cyclase (sGC) inhibits fibrosis
by blocking non-canonical TGFβ signaling. Ann. Rheum. Dis. 2015, 74,
1408−1416.
(11) Masuyama, H.; Tsuruda, T.; Sekita, Y.; Hatakeyama, K.;
Imamura, T.; Kato, J.; Asada, Y.; Stasch, J.-P.; Kitamura, K. Pressure-
independent effects of pharmacological stimulation of soluble
guanylate cyclase on fibrosis in pressure-overloaded rat heart.
Hypertens. Res. 2009, 32, 597−603.
(12) Conole, D.; Scott, L. J. Riociguat: first global approval. Drugs
2013, 73, 1967−75.
(13) Mittendorf, J.; Weigand, S.; Alonso-Alija, C.; Bischoff, E.;
Feurer, A.; Gerisch, M.; Kern, A.; Knorr, A.; Lang, D.; Muenter, K.;
Radtke, M.; Schirok, H.; Schlemmer, K.-H.; Stahl, E.; Straub, A.;
Wunder, F.; Stasch, J.-P. Discovery of riociguat (BAY 63−2521): A
E
ACS Med. Chem. Lett. XXXX, XXX, XXX−XXX