once with the PBS solution containing BSA, whereas the
intensity of the di-C6F13-tag containing sugars was the same
even after washing multiple times. There was only a slight
decrease in the intensity of the –C8F17 tag containing sugars
with multiple washings with PBS as shown by the scans. Fig. 1
shows all nine of the fluorous-linked monosaccharides spotted
on the same fluorous slide. As shown, only two of these fluorous-
linked monosaccharides are seen bound to the ConA-FITC.
The relatively weak non-covalent fluorous interaction of the
mono-C6F13-tag with the slide due to less fluorous content
precluded its visualization. Note also that the b-D-glucose and
a-L-rhamnose compounds did not bind at all, as expected.
From the slide we can see also that the di-C6F13-tag has a
larger spot size and is brighter than the mono-C8F17-tag.
Despite the apparent greater adhesion of the sugars attached
to the di-C6F13-tag to the slides, the fluorous slides could still
be washed and reused at least five times without significantly
increasing background noise.
4 R. Renner, Environ. Sci. Technol., 2009, 43, 1245–1246.
5 K. Kato, L.-Y. Wong, L. T. Jia, Z. Kuklenyik and A. M. Calafat,
Environ. Sci. Technol., 2011, 45, 8037–8045.
6 M.-J. Lopez-Espinosa, T. Fletcher, B. Armstrong, B. Genser,
K. Dhatariya, D. Mondal, A. Ducatman and G. Leonardi,
Environ. Sci. Technol., 2011, 45, 8160–8166.
7 H. Lee and S. A. Mabury, Environ. Sci. Technol., 2011, 45,
8067–8074.
8 E. I. H. Loi, L. W. Y. Yeung, S. Taniyasu, P. K. S. Lam,
K. Kannan and N. Yamashita, Environ. Sci. Technol., 2011, 45,
5506–5513.
9 D. P. Curran, Angew. Chem., Int. Ed., 1998, 37, 1174–1196.
10 D. P. Curran, Science, 2008, 321, 1645–1646.
11 N. L. Pohl, Angew. Chem., Int. Ed., 2008, 47, 3868–3870.
12 W. Zhang and C. Cai, Chem. Commun., 2008, 5686–5694.
13 A. J. Vegas, J. E. Bradner, W. Tang, O. M. McPherson,
E. F. Greenberg, A. N. Koehler and S. L. Schreiber, Angew.
Chem., Int. Ed., 2007, 46, 7960–7964.
14 P.-H. Liang, C.-Y. Wu, W. A. Greenberg and C.-H. Wong, Curr.
Opin. Chem. Biol., 2008, 12, 86–92.
15 R. Nicholson, M. Ladlow and D. Spring, Chem. Commun., 2007,
3906–3908.
16 S. K. Mamidyala, K.-S. Ko, F. A. Jaipuri, G. Park and N. L. Pohl,
J. Fluorine Chem., 2006, 127, 571–579.
17 M. Tojino and M. Mizuno, Tetrahedron Lett., 2008, 49,
5920–5923.
18 (a) N. Brace, J. Fluorine Chem., 1999, 93, 1–25; (b) N. O. Brace,
J. Org. Chem., 1964, 29, 1247; (c) N. O. Brace, J. Org. Chem., 1972,
37, 2429; (d) N. O. Brace, J. Fluorine Chem., 1999, 96, 101–127;
(e) N. O. Brace, J. Fluorine Chem., 2001, 108, 147–175;
(f) N. O. Brace, J. Org. Chem., 1973, 38, 3167; (g) N. O. Brace,
J. Org. Chem., 1975, 40, 851; (h) N. O. Brace and J. E. Van Elswyk,
J. Org. Chem., 1976, 41, 766; (i) N. O. Brace, J. Org. Chem., 1979,
44, 212.
19 J. Loiseau, E. Fouquet, R. Fish, J.-M. Vincent and J.-B. Verlhac,
J. Fluorine Chem., 2001, 108, 195–197.
20 R. Kaplanek, T. Briza, M. Havlika, B. Dolensky, Z. Kejik,
P. Martasek and V. Kral, J. Fluorine Chem., 2006, 129, 386–390.
21 M. Mizuno, S. Kitazawa and K. Goto, J. Fluorine Chem., 2008,
129, 955–960.
22 R. R. Schmidt and J. Michel, Angew. Chem., 1980, 92, 763–764.
23 K. S. Ko, F. A. Jaipuri and N. L. Pohl, J. Am. Chem. Soc., 2005,
127, 13162–13163.
By software analysis of spot intensities, we can conclude that
the spot intensity of the sugars attached to the di-C6F13-tag is two
to four times more intense than that of the mono-C8F17-tag
and its binding ability is superior to both the mono-C8F17- and
-C6F13-tag. The synthesis of the di-C6F13-tag is relatively
simple and has high yielding steps which could be carried
out on a larger scale. Clearly, the standard mono-C8F17 tag
can be effectively and efficiently replaced by the di-C6F13-tag.
Given its comparable behaviour on fluorous silica gel, this new
tag could also possibly replace the octylfluorous tag in the
purification of compounds using FSPE in both manual and
automated syntheses.
N.L.B.P. acknowledges the Wilkinson Professorship in Inter-
disciplinary Engineering. This work was supported in part by
the U. S. National Science Foundation (CHE-0911123).
24 G.-S. Chen and N. L. Pohl, Org. Lett., 2008, 10, 785–788.
25 F. A. Jaipuri, B. Y. M. Collet and N. L. Pohl, Angew. Chem.,
Int. Ed., 2008, 47, 1707–1710.
26 H.-Y. Liao, C.-H. Hsu, S.-C. Wang, C.-H. Liang, H.-Y. Yen,
C.-Y. Su, C.-H. Chen, J.-T. Jan, C.-T. Ren, C.-H. Chen, T.-J. R.
Cheng, C.-Y. Wu and C.-H. Wong, J. Am. Chem. Soc., 2010, 132,
14849–14856.
Notes and references
1 J. Cheng, C. D. Vecitis, H. Park, B. Mader and M. R. Hoffman,
Environ. Sci. Technol., 2008, 42, 8057–8063.
2 A. Pistocchi and R. Loos, Environ. Sci. Technol., 2009, 43,
9237–9244.
3 R. Renner, Environ. Sci. Technol., 2007, 41, 4497–4500.
c
512 Chem. Commun., 2012, 48, 510–512
This journal is The Royal Society of Chemistry 2012