Journal of Natural Products
Article
concentrated under reduced pressure. The residue was purified by
column chromatography (silica gel, EtOAc/hexanes) to furnish 18
(730 mg, 86% yield) as a light yellow solid, a portion of which was
recrystallized from a mixture of CH2Cl2/hexanes to give 18 as yellow
needle-shaped crystals for X-ray analysis. For subsequent batches, the
crude residue obtained after workup was directly subjected to the diazo
transfer reaction without any further purification. Rf 0.55 (silica gel,
226 (22), 209 (53), 195 (19), 181 (31), 154 (12); HREIMS m/z
432.1672 (calcd for C25H24N2O5, 432.1685).
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures for compounds 12a,b, 13, 14 and
spectral data for all the compounds including X-ray data for 17
and 18 (CIF files). This material is available free of charge via
EtOAc/hexanes, 2:3); mp 126−127 °C; [α]26 −10.71 (c 1.12,
D
CHCl3); IR (KBr) νmax 3335, 3034, 2949, 2880, 1757, 1732, 1359,
1048 cm−1; 1H NMR (300 MHz, CDCl3) δ 8.42 (1H, s), 7.56 (1H, d, J
= 7.6 Hz), 7.39−7.25 (6H, m), 7.23−7.11 (2H, m), 4.38 (1H, dd, J =
9.4, 3.4 Hz), 4.01 (1H, dd, J = 9.5, 4.8 Hz), 3.94−3.77 (4H, m), 3.70
(3H, s), 3.62 (1H, d, J = 14.0 Hz), 3.45 (2H, s), 3.30−3.02 (4H, m);
13C NMR (75 MHz, CDCl3) δ 203.2 (C), 172.9 (C), 167.0 (C), 138.9
(C), 135.9 (C), 133.5 (C), 128.5 (2 × CH), 128.3 (2 × CH), 127.2
(CH), 126.5 (C), 121.9 (CH), 119.4 (CH), 118.0 (CH), 111.0 (CH),
106.8 (C), 57.7 (CH), 53.4 (CH2), 52.4 (CH3), 52.0 (CH3), 51.4
(CH), 49.8 (CH2), 49.2 (CH2), 20.8 (CH2); EIMS m/z 434 [M+]
(14), 375 (10), 343 (23), 319 (100), 257 (24), 183 (8), 169 (15), 156
(19), 91(84); anal. C 68.92, H 6.14, N 6.24%, calcd for C25H26N2O5, C
69.11, H 6.03, N 6.45%.
AUTHOR INFORMATION
Corresponding Author
*Tel: 414-229-5856. Fax: 414-229-5530. E-mail: capncook@
■
ACKNOWLEDGMENTS
■
We wish to acknowledge the NIMH (in part) and the Lynde
and Harry Bradley Foundation for support of this work. X-ray
crystallographic studies were supported by NIDA-NRL Inter-
agency Agreement Number Y1-DA1101.
Diazo Transfer Reaction of 18 To Provide (1S,3R)-Methyl-2-
benzyl-1-(3-diazo-4-methoxy-2,4-dioxobutyl)-2,3,4,9-tetrahy-
dro-1H-pyrido[3,4-b]indole-3-carboxylate (19). To the above
keto ester 18 (390 mg, 0.90 mmol) in MeCN (12 mL), Et3N (0.20
mL, 1.44 mmol) was added at rt. The solution which resulted was
allowed to stir for 15 min, at which time mesyl azide (192 mg, 1.8
mmol) was added, and the reaction mixture was allowed to stir at rt for
4 h. The reaction mixture was quenched with H2O, and the mixture
was partitioned between ether and H2O. The aqueous layer was
extracted with ether, and the combined organic layers were washed
with brine and dried (MgSO4), and the solvent was concentrated
under reduced pressure. The residue was subjected to flash silica gel
column chromatography to afford the diazo compound 19 as a yellow
solid (343 mg, 83%). Rf 0.61 (silica gel, EtOAc/hexanes, 2:3); IR
REFERENCES
■
(1) For a review, see: Bosch, J.; Bonjoch, J.; Amat, M. The Strychnos
Alkaloids. In The Alkaloids; Cordell, G. A., Ed.; Academic Press: New
York, 1996; Vol. 48, pp 75−189.
(2) (a) Wiesner, K.; Rideout, W.; Manson, J. A. Experientia 1953, 9,
369. (b) Rapoport, H.; Windgassen, R. J. Jr.; Huges, N. A.; Onak, T. P.
J. Am. Chem. Soc. 1960, 82, 4404−4414. (c) Rapoport, H.; Onak, T. P.;
Hughes, N. A.; Reinecke, M. G. J. Am. Chem. Soc. 1958, 80, 1601−
1604. (d) Janot, M.-M. Tetrahedron 1961, 14, 113−125.
(3) Rapoport, H.; Moore, R. E. J. Org. Chem. 1962, 27, 2981−2985.
(4) Mukherjee, R.; Da Silva, B. A.; Bagnolia, A.; Das, B. C.; Keifer, P.
A.; Shoolery, J. N. Heterocycles 1991, 32, 985−990.
(5) (a) Steele, J. C. P.; Veitch, N. C.; Kite, G. C.; Simmonds, M. S. J.;
Warhurst, D. C. J. Nat. Prod. 2002, 65, 85−88. (b) Dadson, B. A.;
Harley-Mason, J. J. Chem. Soc. [Section D]., Chem. Commun. 1969,
665b.
1
(neat) νmax 3369, 2952, 2136, 1718, 1641, 1436, 741 cm−1; H NMR
(300 MHz, CDCl3) δ 8.48 (1H, s), 7.58 (1H, d, J = 7.4 Hz), 7.39−
7.28 (5H, m), 7.25−7.12 (3H, m), 4.34 (1H, t, J = 6.7 Hz), 4.15 (1H,
dd, J = 10.1, 5.2 Hz), 3.90−3.79 (7H, m), 3.52 (1H, d, J = 13.6 Hz),
3.33 (2H, ddd, J = 22.1, 14.3, 7.5 Hz), 3.17 (1H, dd, J = 16.0, 10.2 Hz),
3.08 (1H, dd, J = 16.0, 5.3 Hz); 13C NMR (75 MHz, CDCl3) δ 191.3
(C), 173.0 (C), 161.5 (C), 139.3 (C), 135.8 (C), 133.5 (C), 128.9 (2
× CH), 127.9 (2 × CH), 127.0 (CH), 126.7 (C), 121.8 (CH), 119.3
(CH), 118.1 (CH), 110.9 (CH), 107.2 (CH), 90.5 (C), 57.4 (CH),
53.1 (CH2), 52.2 (CH), 52.0 (2 × CH3), 46.8 (CH2), 20.4 (CH2);
HRESIMS m/z 461.1824 [M + H]+ (calcd for C25H25N4O5,
461.1825); anal. C 64.93, H 5.42, N 11.90%, calcd for C25H24N4O5,
C 65.21, H 5.25, N 12.17%.
(R,E)-Methyl-2-benzyl-1-(4-methoxy-2,4-dioxobutylidene)-
2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylate (20).
Procedure described for entry 1 (Table 1): To a solution of 19
(207 mg, 0.45 mmol) in dry benzene (6 mL) under nitrogen,
rhodium(II) acetate (20 mg, 0.045 mmol) was added. The mixture was
allowed to stir at rt for 4.0 h. The solution was then filtered through a
pad of Celite and washed with ether. The filtrate was concentrated
under reduced pressure, and the residue was subjected to flash silica
gel column chromatography (EtOAc/hexanes) to furnish 20 (130 mg,
67% yield) as a light yellow oil. Rf 0.41 (silica gel, EtOAc/hexanes,
2:3); IR (neat) νmax 2952, 1735, 1508, 1463, 733 cm−1; 1H NMR (300
MHz, CDCl3) δ 13.8 (1H, s), 7.58 (1H, d, J = 8.0 Hz), 7.50 (1H, d, J =
8.3 Hz), 7.44−7.31 (6H, m), 7.14 (1H, t, J = 7.7 Hz), 5.55 (1H, s),
5.13 (1H, d, J = 16.2 Hz), 4.42−4.40 (2H, m), 3.68−3.61 (7H, m),
3.50 (2H, t, J = 14.6 Hz), 3.39 (1H, dd, J = 16.5, 6.6 Hz); 13C NMR
(75 MHz, CDCl3) δ 187.0 (C), 171.4 (C), 169.0 (C), 152.3 (C),
136.5 (C), 135.8 (C), 129.0 (2 × CH), 127.9 (CH), 127.7 (C), 126.9
(2 × CH), 125.0 (CH), 124.6 (C), 119.9 (CH), 119.2 (CH), 113.0
(CH), 112.1 (C), 94.7 (CH), 62.4 (CH), 56.7 (CH2), 52.8 (CH3),
52.1 (CH3), 50.6 (CH2), 23.8 (CH2); EIMS m/z 432 [M+] (17), 373
(10), 359 (58), 341 (17), 331 (100), 299 (24), 271 (84), 257 (20),
(6) dos Santos, N. P.; Pinto, A. C.; de Alencastro, R. B. Quim. Nova
1998, 21, 666−670.
(7) (a) Araujo, J. Q.; Lima, J. A.; Pinto, A. C.; de Alencastro, R. B.;
́
Albuquerque, M. G. J. Mol. Model 2011, 17, 1401−1412. (b) Lima, J.
̂
A.; Costa, R. S.; Epifanio, R. A.; Castro, N. G.; Rocha, M. S.; Pinto, A.
C. Pharmacol. Biochem. Behav. 2009, 92, 508−513.
(8) (a) Aurousseau, M. Ann. Pharm. Fr. 1961, 19, 175−189.
(b) Aurousseau, M. Ann. Pharm. Fr. 1961, 19, 104−116.
(9) For the synthesis of (+)-geissoschizine (6a), see: (a) Yu, S.;
Berner, O. M.; Cook, J. M. J. Am. Chem. Soc. 2000, 122, 7827−7828.
For the synthesis of (+)-vellosimine (9), see: (b) Wang, T.; Cook, J.
M. Org. Lett. 2000, 2, 2057−2059.
(10) (a) Edwankar, C. R.; Edwankar, R. V.; Rallapalli, S. K.; Cook, J.
M. Nat. Prod. Commun. 2008, 3, 1839−1870. (b) Edwankar, C. R.;
Edwankar, R. V.; Namjoshi, O. A.; Rallapalli, S. K.; Yang, J.; Cook, J.
M. Curr. Opin. Drug Discovery Dev. 2009, 12, 752−771.
(11) (a) Cox, E.; Cook, J. M. Chem. Rev. 1995, 95, 1797−1842.
(b) Czerwinski, K. M.; Cook, J. M. Sterochemical Control of the
Pictet-Spengler Reaction in the Synthesis of Natural Products. In
Advances in Heterocyclic Natural Product Synthesis; Pearson, W., Ed.;
Academic Press: San Diego, 1996; Vol. 3, pp 217−277. (c) Lorenz,
M.; Van Linn, M. L.; Cook, J. M. Curr. Org. Synth. 2010, 7, 189−223.
(d) Lewis, S. E. Tetrahedron 2006, 62, 8655−8681.
(12) For most recent approaches to the ABCE tetracyclic core of the
Strychnos alkaloids, see: (a) Jones, S. B.; Simmons, B.; Mastracchio, A.;
MacMillan, D. W. C. Nature 2011, 475, 183−188. (b) Delgado, R.;
Blakey, S. B. Eur. J. Org. Chem. 2009, 1506−1510. (c) Sirasani, G.;
Andrade, R. B. Org. Lett. 2009, 11, 2085−2088. (d) Martin, D. B. C.;
Vanderwal, C. D. J. Am. Chem. Soc. 2009, 131, 3472−3473. (e) Pereira,
J.; Barlier, M.; Guillou, C. Org. Lett. 2007, 9, 3101−3103. (f) Beniazza,
187
dx.doi.org/10.1021/np200759h | J. Nat. Prod. 2012, 75, 181−188