Methyl (2,2-dimethyl-1,3-dioxolan-4-yl)methyl carbonate (3c).
A 100 mL glass flask equipped with a condenser was charged
with solketal (1c, 3.0 g, 0.023 mol), DMC (39 mL, 41 mL, molar
ratio, W, DMC : 1c = 20) and K2CO3 (3.9 g, molar ratio, Q,
K2CO3 : 1c = 1.2). The flask was immersed in a thermostated oil
bath, heated to the reflux temperature of DMC (90 ◦C) and kept
under magnetic stirring. The reaction was monitored by GC.
After 95 h, the mixture was cooled to rt, and filtered to remove
K2CO3 (Gooch#4). The solid was washed with diethyl ether (3 ¥
30 mL). The resulting solution (~100 mL) was concentrated by
rotary evaporation (30 ◦C, 600 mbar), and then vacuum distilled.
Product 3c was isolated by distillation under reduced pressure
(63 ◦C, 3 mmHg), in 88% yield (3.85 g, purity 98% by GC). The
product was fully characterized by GC-MS, 1H and 13C NMR.
GC-MS (relative intensity, 70 eV) m/z: 190 (M+, <1%),
175 ([M-H3C]+,18), 115 (M-OCO2CH3]+, 2), 101 (M-
CH2OCO2CH3]+, 8), 71 (19), 59 ([CH3OC O]+, 16), 57 (11),
Future of Glycerol: New Usages for a Versatile Raw Material, 2008,
RSC Publishing, Cambridge, UK.
2 T. Werpy and G. Petersen, in Top Value Added Chemicals From
Biomass, the Pacific Northwest National Laboratory (PNNL) and the
National Renewable Energy Laboratory (NREL), U.S. Department
of Energy, 2004.
3 (a) G. Vicente, J. A. Melero, G. Morale, M. Paniagua and E. Martin,
Green Chem., 2010, 12, 899–907; (b) European Biodiesel Board,
and M. Mchich, Tetrahedron Lett., 1987, 28, 6601–6604; (c) A.
Corma, S. Iborra and A. Velty, Chem. Rev., 2007, 107, 2411–2502;
(d) C. X. A. Da Silva, V. L. C. Gonc¸alves and C. J. A. Mota, Green
Chem., 2009, 11, 38–41.
5 (a) T. Cablewsky, A. F. Faux and C. R. J. Strauss, J. Org. Chem.,
1994, 59, 3408; (b) P. Sahai and R. A. J. Vishwakarma, J. Chem. Soc.,
Perkin Trans. 1, 1997, 12, 1845; (c) J. S. Clarkson, A. J. Walker and
M. A. Wood, Org. Process Res. Dev., 2001, 5, 630–635; (d) B. Delfort,
I. Durand, A. Jaecker, T. Lacome, X. Montagne, and F. Paille, US
Patent, 0 163 949, 2003.
6 (a) Alpharx INC. Pat., US2005/255 133 A1, 2005; (b) Ger. Offen
3447783, 198; (c) PCT Int. Appl. 88 050 71, 1988; (d) Etex
Corporation, LEE, M. Youngmi, Patent, WO2005/117 919 A2, 2005;
(e) K. Fraatz, and D. Mertin, Heep, Irish Patent, US2006/349 26 A1,
2006; (f) Celgene Corporation Patent, US2006/127 421 A1, 2006.
7 (a) A. Jaecker-Voirol, I. Durand, G. Hillion, B. Delfort and X.
Montagne, Oil Gas Sci. Technol., 2008, 63, 395–404; (b) E. Garc´ıa,
M. Laca, E. Pe´rez, A. Garrido and J. Peinado, Energy Fuels, 2008,
22, 4274–4280.
1
43 ([H3CCO]+, 100), 41 (17). H NMR (CDCl3, 400 MHz) d
(ppm): 4.36–4.31 (m, 1H), 4.19–4.15 (m, 2H), 4.08 (dd, 1H, J1 =
8.6 Hz, J2 = 6.4 Hz), 3.78 (dd, 1H, J1 = 8.6 Hz, J2 = 5.8 Hz), 3.79
(s, 3H), 1.43 (s, 3H), 1.36 (s, 3H). 13C NMR (CDCl3, 100 MHz)
d (ppm): 155.5, 190.8, 73.2, 67.9, 66.2, 54.9, 26.6, 25.3.
Benzyl(2,2-dimethyl-1,3-dioxolan-4-yl)methyl carbonate (5c).
A 50 mL glass flask equipped with a condenser was charged with
solketal (1c, 0.94 g, 7.1 mmol), DBnC (3.6 g, molar ratio, W,
DBnC : 1c = 2), K2CO3 (1.3 g, molar ratio, Q, K2CO3 : 1c = 1.2)
and dimethoxyethane (glyme, 20 mL) as the solvent. The flask
was immersed in a thermostated oil bath, heated to the reflux
temperature of glyme (85 ◦C) and kept under magnetic stirring.
The reaction was monitored by GC-MS. After 12 h, the mixture
was cooled to rt, and filtered to remove K2CO3 (Gooch#4). The
solid was washed with diethyl ether (3 ¥ 10 mL). Compound
5c was purified by FCC (flash column chromatography) over
silica gel, using gradient petroleum ether (PE)/diethyl ether
(Et2O) elutions [initial PE : Et2O = 1 : 0 v/v, final PE:Et2O =
1 : 1 v/v], and isolated in a yield of 65% (1.2 g). Product was
fully characterized by GC-MS, 1H and 13C NMR.
GC-MS (relative intensity, 70 eV) m/z: 266 (M+, <1%), 101
([M-H2COCO2CH2Ph]+,11), 91 ([CH2Ph]+, 100), 65 (10), 59 (10),
43 ([H3CCO]+, 64). 1H NMR (CDCl3, 400 MHz) d (ppm): 7.39–
7.33 (m, 5H), 5.17 (s, 2H), 4.35–4.31 (m, 1H), 4.21 (dd, 1H, J1 =
9.2 Hz, J2 = 3.2 Hz), 4.16 (dd, 1H, J1 = 9.2 Hz, J2 = 3.9 Hz), 4.07
(dd, 1H, J1 = 8.5 Hz, J2 = 6.4 Hz), 3.78 (dd, 1H, J1 = 8.5 Hz, J2 =
5.9 Hz), 1.42 (s, 3H), 1.36 (s, 3H). 13C NMR (CDCl3, 100 MHz)
d (ppm): 149.7, 129.8, 123.4, 123.2, 104.7, 68.1, 64.6, 62.7, 61.1,
21.4, 20.1.
8 (a) J. L. Gras and J. F. Bonfanti, Synlett, 2000, 2, 248–250; (b) B. E.
Coleman, V. Cwynar, D. J. Hart, F. Havas, J. M. Mohan, S. Patterson,
S. Ridenour, M. Schmidt, E. Smith and A. J. Wells, Synlett, 2004, 8,
1339–1342.
9 (a) D. L. Rachmankulov, S. S. Zlotskij, L. S. Rol’nik, G. T. Teregulova
and H. J. Timpe, J. Prakt. Chem., 1989, 331, 697–699; (b) R.
Chenevert and R. Gagnon, J. Org. Chem., 1993, 58, 1054–1057;
(c) U. Naeser, A. J. Pierik, R. Scott, I. Cinkaya, W. Buckel and B. T.
Golding, Bioorg. Chem., 2005, 33, 53–66; (d) H. Zhang, K. Shibuya,
H. Hemmi, T. Nishino and G. D. Prestwich, Org. Lett., 2006, 8, 943–
946; (e) W. Wu Li, M. Rongti, S. Subbalakshmi, H. J. Warshakoon,
M. R. Kimbrell, M. W. Amolins, R. Ukani, A. Datta and S. A. David,
J. Med. Chem., 2010, 53, 3198–3213.
10 (a) M. Selva and P. Tundo, Acc. Chem. Res., 2002, 35, 706–716; (b) M.
Selva, Pure Appl. Chem., 2007, 79, 1855–1867.
11 (a) M. Selva, C. A. Marques and P. Tundo, J. Chem. Soc., Perkin
Trans. 1, 1994, 10, 1323–1328; (b) A. Bomben, M. Selva, P. Tundo
and L. Valli, Ind. Eng. Chem. Res., 1999, 38, 2075–2079; (c) M.
Selva, Synthesis, 2003, 18, 2872–2876; (d) M. Selva, P. Tundo and
T. Foccardi, J. Org. Chem., 2005, 70, 2476–2485; (e) M. Selva and P.
Tundo, J. Org. Chem., 2006, 71, 1464–1470; (f) M. Selva, P. Tundo,
A. Perosa and D. Brunelli, Green Chem., 2007, 9, 463–468; (g) M.
Selva, E. Militello and M. Fabris, Green Chem., 2008, 9, 73–79; (h) M.
Fabris, V. Lucchini, M. Noe`, A. Perosa and M. Selva, Chem.–Eur. J.,
2009, 15, 12273–12282.
12 (a) P. Tundo, F. Trotta and G. Moraglio, Ind. Eng. Chem. Res., 1988,
27, 1565–1571; (b) B. Veldurthy, J.-M. Clacens and F. Figueras, J.
Catal., 2005, 229, 237–242.
13 The structure of C5 and C6 isomers of both 2a–2b and 3a–3b were
assigned through their MS spectra, and their amounts were evaluated
by GC analysis (further details are in the ESI†).
14 See references 10a, 11a, and also: M. Selva and A. Perosa, Green
Acknowledgements
Chem., 2008, 10, 457–464.
15 (a) J. Otero and J. Nishikido, in Esterification Methods, Reactions,
and Applications, Wiley-VCH, 2010; (b) S. A. Pasias, N. K. Barakos
and N. G. Papayannakos, Ind. Eng. Chem. Res., 2009, 48, 4266–4273;
(c) M. Diasakou, A. Louloudi and N. Papayannakos, Fuel, 1998, 77,
1297–1302; (d) Z. Ilham and S. Saka, Lipid Technology, 2011, 23(1),
10–13.
MIUR (Italian Ministry for Education, University and Re-
search) is gratefully acknowledged for the financial support of
this work.
16 (a) J. Radell and R. E. Rondeau, J. Chem. Eng. Data, 1971, 16, 104–
105; (b) J. Mercier, US Pat. 3, 928, 459 (Dec. 23, 1975); (c) J. March,
in Advanced Organic Chemistry, 4th Ed. Wiley, 1992, p. 890.
17 The alcohol (methanol) derived from the DMC mediated alkylation
reaction (Scheme 2). On the other hand, acidity for catalysis could
be provided by the hygroscopic features of faujasites. See: Organic
Solid State Reactions, ed. F. Toda, Kluwer Academic Publishers,
Notes and references
1 (a) Z. Z. J. Wang, J. Zhuge, H. Fang and A. Prior, Biotechnol. Adv.,
2001, 19, 201–223; (b) J. Chowdury and K. Fouky, Chem. Eng., 1993,
100, 35–39; (c) C. W. Chiu, M. J. Goff and G. J. Supples, AIChE
J., 2005, 51, 1274–1278; (d) F. Je´roˆme, Y. Pouilloux and J. Barrault,
ChemSusChem, 2008, 1, 586–613; (e) M. Pagliaro and M. Rossi, The
This journal is
The Royal Society of Chemistry 2012
Green Chem., 2012, 14, 188–200 | 199
©