8
TANG ET AL.
2. Sipos L, Ilisz I, Nonn M, et al. High‐performance liquid
chromatographic enantioseparation of unusual isoxazoline‐fused 2‐
aminocyclopentanecarboxylic acids on macrocyclic glycopeptide‐
based chiral stationary phases. J Chromatogr A. 2012;1232:
142‐151.
18. Tang J, Zhang S, Lin Y, et al. Engineering cyclodextrin clicked
chiral stationary phase for high‐efficiency enantiomer separation.
Sci Rep. 2015;5:11523.
19. Pang L, Zhou J, Tang J, Ng S‐C, Tang W. Evaluation of
perphenylcarbamated cyclodextrin clicked chiral stationary phase
for enantioseparations in reversed phase high performance liquid
chromatography. J Chromatogr A. 2014;1363:119‐127.
3. López‐Ram‐de‐Víu P, Gálvez JA, Díaz‐de‐Villegas MD. High‐
performance liquid chromatographic enantioseparation of unusual
amino acid derivatives with axial chirality on polysaccharide‐based
chiral stationary phases. J Chromatogr A. 2015;1390:78‐85.
20. Carrasco‐Correa EJ, Ramis‐Ramos G, Manuel Herrero‐Martinez J,
Laemmerhofer M. Polymethacrylate monoliths with immobilized
poly‐3‐mercaptopropyl methylsiloxane film for high‐coverage sur-
face functionalization by thiol‐ene click reaction. J Chromatogr A.
2014;1367:123‐130.
4. Lai X, Tang W, Ng S‐C. Novel β‐cyclodextrin chiral stationary
phases with different length spacers for normal‐phase high perfor-
mance liquid chromatography enantioseparation. J Chromatogr A.
2011;1218:3496‐3501.
21. Lin Y, Zhou J, Tang J, Tang W. Cyclodextrin clicked chiral
5. Ai F, Wang Y, Chen H, Yang Y, Tan TT, Ng S‐C. Enantioselective
separation of dansyl‐DL‐amino acids and some racemates on “click”
functionalized native α‐cyclodextrin based sub‐2 μm columns.
Analyst. 2013;138:2289‐2294.
stationary phases with functionalities‐tuned enantioseparations in
high performance liquid chromatography.
J Chromatogr A.
2015;1406:342‐346.
22. Zhang S, Wang H, Tang J, Wang W, Tang W. Exploration of a
β‐cyclodextrin clicked chiral stationary phase in high‐performance
liquid chromatography. Anal Methods. 2014;6:2034‐2037.
6. Lai X, Tang W, Ng S‐C. Novel cyclodextrin chiral stationary phases
for high performance liquid chromatography enantioseparation:
Effect of cyclodextrin type. J Chromatogr A. 2011;1218:5597‐5601.
23. Zhang Y, Guo Z, Ye J, Xu Q, Liang X, Lei A. Preparation of novel
β‐cyclodextrin chiral stationary phase based on click chemistry. J
Chromatogr A. 2008;1191:188‐192.
7. Zhang T, Holder E, Franco P, Lindner W. Method development and
optimization on cinchona and chiral sulfonic acid–based zwitter-
ionic stationary phases for enantiomer separations of free amino
acids by high‐performance liquid chromatography. J Chromatogr
A. 2014;1363:191‐199.
24. Tang J, Pang L, Zhou J, Tang W. Enantioseparation tuned by solvent
polarity on a β‐cyclodextrin clicked chiral stationary phase. J Sep
Sci. 2015;38:3137‐3144.
8. Qiu H, Liang X, Sun M, Jiang S. Development of silica‐based
stationary phases for high‐performance liquid chromatography. Anal
Bional Chem. 2011;399:3307‐3322.
25. Chankvetadze B, Yashima E, Okamoto Y. Chloro-
methylphenylcarbamate derivatives of cellulose as chiral stationary
phases for high‐performance liquid chromatography. J Chromatogr
A. 1994;670:39‐49.
9. Wang RQ, Ong T‐T, Tang W, Ng S‐C. Cationic cyclodextrins
chemically‐bonded chiral stationary phases for high‐performance
liquid chromatography. Anal Chim Acta. 2012;718:121‐129.
26. Dungelová J, Lehotay J, Krupčík J, Cižmárik J, Armstrong DW.
Study of the mechanism of enantioseparation Part VI: Thermody-
namic study of HPLC separation of some enantiomers of
phenylcarbamic acid derivatives on a (S,S) Whelk‐O 1 column.
J Sep Sci 2004;27:983–990.
10. Wang RQ, Ong T‐T, Tang W, Ng S‐C. Recent advances in pharma-
ceutical separations with supercritical fluid chromatography using
chiral stationary phases. TrAC‐Trends Anal Chem. 2012;37:83‐100.
11. Hyun MG. Development of HPLC chiral stationary phases based on
(+)‐(18‐corwn‐6)‐2,3,11,12‐tetracarboxylic acid and their applica-
tions. Chirality. 2015;27:576‐588.
27. Chester TL, Coym JW. Effect of phase ratio on van't Hoff analysis in
reversed‐phase liquid chromatography, and phase‐ratio‐independent
estimation of transfer enthalpy. J Chromatogr A. 2003;1003:
101‐111.
12. Tang M, Zhang J, Zhuang S, Liu W. Development of chiral station-
ary phases for high‐performance liquid chromatographic separation.
TrAC‐Trends Anal Chem. 2012;39:180‐194.
28. Okamoto M. Reversal of elution order during the chiral separation in
high performance liquid chromatography. J Pharmaceut Biomed.
2002;27:401‐407.
13. Shen J, Okamoto Y. Efficient separation of enantiomers using
stereoregular chiral polymers. Chem Rev. 2016;116:1094‐1138.
29. Chen L, Zhang LF, Ching CB, Ng S‐C. Synthesis and chromato-
graphic properties of a novel chiral stationary phase derived
from heptakis(6‐azido‐6‐deoxy‐2,3‐di‐O‐phenylcarbamoylated)‐β‐
cyclodextrin immobilized onto amino‐functionalized silica gel via
multiple urea linkages. J Chromatogr A. 2002;950:65‐74.
14. Tang W, Ng S‐C, Sun D. Modified cyclodextrins for chiral
separation. Berlin, Heidelberg: Springer; 2013.
15. Zhang X, Zhang Y, Armstrong DW. Chromatographic separations
and analysis: Cyclodextrin mediated HPLC. GC and CE enantio-
meric separations Comprehens Chiral. 2012;8:177.
16. Kolb HC, Finn MG, Sharpless KB. Click chemistry: Diverse
chemical function from a few good reactions. Angew Chem Int Ed.
2001;40:2004‐2021.
How to cite this article: Tang J, Lin Y, Yang B, Zhou
J, Tang W. Functionalities tuned enantioselectivity of
phenylcarbamate cyclodextrin clicked chiral stationary
17. Chu C, Liu R. Application of click chemistry on preparation of
separation materials for liquid chromatography. Chem Soc Rev.
2011;40:2177‐2188.